目录
4、输入命令:python -m tensorboard.main --logdir="C:\Users\15535\Desktop\day6\train"
1、新建模型 train_model.py
import torch
import torchvision.transforms
from torch.utils.tensorboard import SummaryWriter
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn as nn
from torch.nn import CrossEntropyLoss
#step1.下载数据集
train_data=datasets.CIFAR10('./data',train=True,\
transform=torchvision.transforms.ToTensor(),
download=True)
test_data=datasets.CIFAR10('./data',train=False,\
transform=torchvision.transforms.ToTensor(),
download=True)
print(len(train_data))
print(len(test_data))
#step2.数据集打包
train_data_loader=DataLoader(train_data,batch_size=64,shuffle=False)
test_data_loader=DataLoader(test_data,batch_size=64,shuffle=False)
#step3.搭建网络模型
class My_Module(nn.Module):
def __init__(self):
super(My_Module,self).__init__()
#64*32*32*32
self.conv1=nn.Conv2d(in_channels=3,out_channels=32,\
kernel_size=5,padding=2)
#64*32*16*16
self.maxpool1=nn.MaxPool2d(2)
#64*32*16*16
self.conv2=nn.Conv2d(in_channels=32,out_channels=32,\
kernel_size=5,padding=2)
#64*32*8*8
self.maxpool2=nn.MaxPool2d(2)
#64*64*8*8
self.conv3=nn.Conv2d(in_channels=32,out_channels=64,\
kernel_size=5,padding=2)
#64*64*4*4
self.maxpool3=nn.MaxPool2d(2)
#线性化
self.flatten=nn.Flatten()
self.linear1=nn.Linear(in_features=1024,out_features=64)
self.linear2=nn.Linear(in_features=64,out_features=10)