python期权定价公式_python障碍式期权定价公式

#coding:utf-8

'''

障碍期权

q=x/s

H = h/x H 障碍价格

[1] Down-and-in call cdi

[2] Up-and-in call cui

[3] Down-and-in put pdi

[4] Up-and-in put pui

[5] Down-and-out call cdo

[6] Up-and-out call cuo

[7] Down-and-out put pdo

[8] Up-and-out put puo

'''

from math import log,sqrt,exp,ceil

from scipy import stats

import datetime

import tushare as ts

import pandas as pd

import numpy as np

import random

import time as timess

import os

def get_codes(path='D:\\code\\20180313.xlsx'): #从代码表格从获取代码

codes = pd.read_excel(path)

codes = codes.iloc[:,1]

return codes

def get_datas(code,N=1,path='D:\\data\\'): #获取数据N=1当天数据

datas = pd.read_csv(path+eval(code)+'.csv',encoding='gbk',skiprows=2,header=None,skipfooter=N,engine='python').dropna() #读取CSV文件 名称为股票代码 解gbk skiprows跳过前两行文字 第一行不做为表头

date_c = datas.iloc[:,[0,4,5]] #只用第0 列代码数据和第4列收盘价数据

date_c.index = datas[0]

return date_c

def get_sigma(close,std_th):

x_i = np.log(close/close.shift(1)).dropna()

sigma = x_i.rolling(window=std_th).std().dropna()*sqrt(244)

return sigma

def get_mu(sigma,r):

mu = (r-pow(sigma,2)/2)/pow(sigma,2)

return mu

def get_lambda(mu,r,sigma):

lam = sqrt(mu*mu+2*r/pow(sigma,2))

return lam

def x_y(sigma,T,mu,H,lam,q=1):

x1 = log(1/q)/(sigma*sqrt(T))+(1+mu)*sigma*sqrt(T)

x2 = log(1/(q*H))/(sigma*sqrt(T))+(1+mu)*sigma*sqrt(T)

y1 = log(H*H/q)/(sigma*sqrt(T))+(1+mu)*sigma*sqrt(T)

y2 = log(q*H)/(sigma*sqrt(T))+(1+mu)*sigma*sqrt(T)

z = log(q*H)/(sigma*sqrt(T))+lam*sigma*sqrt(T)

return x1,x2,y1,y2,z

def get_standardBarrier(eta,phi,mu,sigma,r,T,H,lam,x1,x2,y1,y2,z,q=1):

f1 = phi*1*stats.norm.cdf(phi*x1,0.0,1.0)-phi*q*exp(-r*T)*stats.norm.cdf(phi*x1-phi*sigma*sqrt(T),0.0,1.0)

f2 = phi*1*stats.norm.cdf(phi*x2,0.0,1.0)-phi*q*exp(-r*T)*stats.norm.cdf(phi*x2-phi*sigma*sqrt(T),0.0,1.0)

f3 = phi*1*pow(H*q,2*(mu+1))*stats.norm.cdf(eta*y1,0.0,1.0)-phi*q*exp(-r*T)*pow(H*q,2*mu)*stats.norm.cdf(eta*y1-eta*sigma*sqrt(T),0.0,1.0)

f4 = phi*1*pow(H*q,2*(mu+1))*stats.norm.cdf(eta*y2,0.0,1.0)-phi*q*exp(-r*T)*pow(H*q,2*mu)*stats.norm.cdf(eta*y2-eta*sigma*sqrt(T),0.0,1.0)

f5 = (H-1)*exp(-r*T)*(stats.norm.cdf(eta*x2-eta*sigma*sqrt(T),0.0,1.0)-pow(H*q,2*mu)*stats.norm.cdf(eta*y2-eta*sigma*sqrt(T),0.0,1.0))

f6 = (H-1)*(pow(H*q,(mu+lam))*stats.norm.cdf(eta*z,0.0,1.0)+pow(H*q,(mu-lam))*stats.norm.cdf(eta*z-2*eta*lam*sigma*sqrt(T),0.0,1.0))

return f1,f2,f3,f4,f5,f6

def main(param,t,r=0.065):

typeflag = ['cdi','cdo','cui','cuo','pdi','pdo','pui','puo']

r = log(1+r)

T = t/365

codes = get_codes()

H = 1.2

for i in range(len(codes)):

sdbs = []

for j in typeflag:

code = codes.iloc[i]

datas = get_datas(code)

close = datas[4]

sigma = get_sigma(close,40)[-1]

mu = get_mu(sigma,r)

lam = get_lambda(mu,r,sigma)

x1,x2,y1,y2,z = x_y(sigma,T,mu,H,lam)

eta = param[j]['eta']

phi = param[j]['phi']

f1,f2,f3,f4,f5,f6 = get_standardBarrier(eta,phi,mu,sigma,r,T,H,lam,x1,x2,y1,y2,z)

if j=='cdi':

sdb = f1-f2+f4+f5

if j=='cui':

sdb = f2-f3+f4+f5

if j=='pdi':

sdb = f1+f5

if j=='pui':

sdb = f3+f5

if j=='cdo':

sdb = f2+f6-f4

if j=='cuo':

sdb = f1-f2+f3-f4+f6

if j=='pdo':

sdb = f6

if j=='puo':

sdb = f1-f3+f6

sdbs.append(sdb)

print(T,r,sigma,H,sdbs)

if __name__ == '__main__':

param = {'cdi':{'eta':1,'phi':1},'cdo':{'eta':1,'phi':1},'cui':{'eta':-1,'phi':1},'cuo':{'eta':-1,'phi':1},

'pdi':{'eta':1,'phi':-1},'pdo':{'eta':1,'phi':-1},'pui':{'eta':-1,'phi':-1},'puo':{'eta':-1,'phi':-1}}

t = 30

main(param,t)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值