Python使用BS定价公式计算欧式期权标记价(MarkPrice)

本文介绍了如何使用Python及BS定价公式计算欧式期权的标记价格。关键因素包括标的资产价格、行权价、到期时间(秒为单位)、无风险利率和隐含波动率。在计算看涨和看跌期权标记价时,涉及正太分布的累积和概率密度函数,需要nump、scipy和math库。代码中从数据库获取到期时间并转换为秒,计算结果可能因波动率和价格变动导致小数点后数值偏差。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

      影响标记价格的几个要素是标的资产价格(即标的价格)、行权价、到期日(可以是天或秒,使用秒计算更精确)、无风险利率、隐含波动率。

        若要计算看涨(即Call)和看跌(Put)的标记价,还需要计算两个中间参数。一个参数用于计算认购(即看涨Call)期权的价格,一个参数用于计算认购或认沽(即看跌Put)价格。

用到知识点是正太分布累计概率和正太分布概率密度函数,需要引入的库是nump、scipy、norm、math,详细见实现过程。

1、导入必备的库

from math import log, sqrt, exp
from scipy.stats import norm
import numpy as np
from scipy import optimize
'''
# S 底层资产价格,即标的价格(官方为标的资产价格)
# K 期权执行价格,strike price   行权价
# T 期权的剩余期限,单位:年     合约到期时间,如果到期日不足一天需要换算成天,然后除以365(总小时/24)
# r 无风险收益率,数字货币市场一般为0,  0即可
# sigma 底层资产价格年化波动率,标记价的隐含波动率,去redis查
d1()、 d2() 说明:
这两个参数在期权定价模型中起到关键的作用,尤其在使用 Black-Scholes 期权定价模型时。
这个模型是一种用来估计欧式期权价格的数学公式。它假设市场是有效的,并且标的资产价格的变动服从几何布朗运动。
根据这个模型,可以使用 d1 和 d2 来计算认购期权和认沽期权的价格。
'''

def d1(S, K, T, r, sigma):
    '''d1 是一个中间参数,用于计算认购期权的价格''&
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Blogfish

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值