多元线性回归模型是社会科学中常用的模型,但其实这个模型有很多的要求,在应用模型前必须要了解背后的假设,然后来判断在自己的变量上应用这个模型是否适切,如果某些地方有违背,我们可以通过一些统计的方法来修正。
多元线性回归模型的假设
比较重要的假设有5个,至少要同时满足这5个才是一个好的多元线性回归模型。
- 既然是线性模型,那关系必然是线性的。
- 误差与自变量不相关
- 方差齐性 homoscedasticity (equal variance of ui)
- 误差之间不相关
- 误差正态分布 normality disturbance
下面逐个解释
1.自变量与因变量呈线性关系
通过散点图可以大致看出,左图是个曲线,但是右图可能是直线。因此右图就更加适合线性模型。如果非把曲线关系用线性模型来呈现,那么这个斜率其实是没有意义的,因为曲线模型的斜率一直是变化的,我们做这个模型预测得出的因变量会非常不准确。
2.误差项