多元线性回归模型_多元线性回归模型的假设、检验及修正

本文详细介绍了多元线性回归模型的五个关键假设:线性关系、误差与自变量不相关、方差齐性、误差正态分布和误差不相关。讨论了如何通过偏回归图、方差检验等方法检测假设是否被违背,并提出了相应的修正方法,如添加遗漏变量、使用robust标准误差等。
摘要由CSDN通过智能技术生成

0ffc91136c8c568c84cde1468d9c0304.png

多元线性回归模型是社会科学中常用的模型,但其实这个模型有很多的要求,在应用模型前必须要了解背后的假设,然后来判断在自己的变量上应用这个模型是否适切,如果某些地方有违背,我们可以通过一些统计的方法来修正。

多元线性回归模型的假设

比较重要的假设有5个,至少要同时满足这5个才是一个好的多元线性回归模型。

  1. 既然是线性模型,那关系必然是线性的。
  2. 误差与自变量不相关
  3. 方差齐性 homoscedasticity (equal variance of ui)
  4. 误差之间不相关
  5. 误差正态分布 normality disturbance

下面逐个解释

1.自变量与因变量呈线性关系

f7ccf7f1469c574c19cdb5827a51bd7c.png

通过散点图可以大致看出,左图是个曲线,但是右图可能是直线。因此右图就更加适合线性模型。如果非把曲线关系用线性模型来呈现,那么这个斜率其实是没有意义的,因为曲线模型的斜率一直是变化的,我们做这个模型预测得出的因变量会非常不准确。

2.误差项࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值