H0:b1 = b2 = ... = bk-1 = 0 ,
H1:bi, i = 1, ..., k -1不全为零。
首先要构造F统计量。由(3.36)式知总平方和(SST)可分解为回归平方和(SSR)与残差平方和(SSE)两部分。与这种分解相对应,相应自由度也可以被分解为两部分。
SST具有T - 1个自由度。这是因为在T个变差 ( yt -), t = 1, ..., T,中存在一个约束条件,即 = 0。由于回归函数中含有k个参数,而这k个参数受一个约束条件 制约,所以SSR具有k -1个自由度。因为SSE中含有T个残差,= yt -, t = 1, 2, ..., T,这些残差值被k个参数所约束,所以SSE具有T - k个自由度。与SST相对应,自由度T - 1也被分解为两部分,
(T -1) = ( k - 1) + (T - k) (3.44)
平方和除以它相应的自由度称为均方。所以回归均方定义为
MSR = SSR / ( k - 1)
误差均方定义为
MSE = SSE / (T - k)
(显然MSE = s 2 (见3.23式),它的期望是s 2)。定义F统计量为
(3.45)
在H0成立条件下,有
F = ~ F(k -1, T - k)
设检验水平为 a ,则检验规则是
若用样本计算的F £ Fa (k -1, T - k),则接受H0,
若用样本计算的F > Fa (k -1, T - k),则拒绝H0。
拒绝H0意味着肯定有解释变量与yt存在回归关系。若F检验的结论是接受H0,则说明k – 1个解释变量都不与yt存在回归关系。此时,假设检验应该到此为止。当F检验的结论是拒绝H0时,应该进一步做t检验,从而确定模型中哪些是重要解释变量,哪些是非重要解释变量。
from:http://classroom.dufe.edu.cn/spsk/c102/wlkj/CourseContents/Chapter03/03_07_01.htm
http://classroom.dufe.edu.cn/spsk/c102/wlkj/CourseContents/Chapter03/