graphpad prism显著性差异分析_GraphPad Prism统计之单因素ANOVA分析

博客涉及GraphPad Prism显著性差异分析相关内容,给出了习题答案为单因素ANOVA,还设有思考题,并引导读者点“在看”。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

5c112245ea934506ca2aa174f89c0767.png

8dce9d80d7f00e1b4e430f9d35ec3464.png

GraphPad Prism可谓数据分析表现的小能手,能文能武能统计能画图,那它做统计时如何施展拳脚的,这几天让我们由浅入深的来学习下。

习题

MCF-7细胞过表达MKL-1、STAT3,或MKL-1加上STAT3,检测N-cadherin的相对表达量,pCDNA3.1为对照。 请用合适的统计方法对下列模拟数据进行分析: 7809e319b0e9ad96fb4be206587b9781.png 再给个示例图提示 9a9320f310230690815b616359db71e6.png 本题示例图来源于文献PMID:28499590;Fig 1A

答案:单因素ANOVA

看结构这只有一个分组的维度,即细胞的处理方式不同,所以在Prism里数据录入的形式应该选择Column。但Prism的方向跟Excel不同,组别分列,样本(或重复测量值)分行,所以在Excel中复制数据后,到Prism里要用“Ctrl+Shift+T ”来粘贴,将数据转个 90º 。组名也是一样的做法。 162fc8c1557f5d62473344d3213e70df.png 接下来,多组数据之间的比较,首先想到单因素ANOVA;但要先做正态性检验,若不符合正态分布,则应采用非参数检验。 1) 正态性检验: 点工具栏上的Analyze之后,在弹窗中选择Column statistics,勾选上所有组别。 b37aea825339894d70d89dcf4f0cd8c7.png 点OK之后的弹窗中,把高斯分布(即正态分布)下的三个检验方法都勾上。 简单理解一下这三种方法:当样本量大时,三种方法的结果大同小异;样本量小时,一般只有SW法能计算出结果。至于大小样本的界定,还有不少争议,如30、200、2000为界。没把握就先都选上再看咯。Prism推荐第一种,但第二、三种更常用,SPSS里就是提供后两种的结果。 4c33af0c25a4ba6c1285ea5f9773d03b.png 说句题外话,Prism开发组似乎不太喜欢KS法,因为不灵敏,认为它只是个历史情怀。在新版使用说明中讲到:“早期版本我们曾提供KS法,现在还是把它放在这(为了保持一贯性),只是不再推荐。”毫不掩饰的一脸嫌弃.jpg,所以不造将来的版本是否会淘汰它。 本例中N=3,果然只有SW法能出结果,并且很直白地告诉你有没有通过(pass)正态性检验,这里是Yes,符合。 dff994a8892f669010c38b7e54ac450e.png 2) 单因素ANOVA 再点一下Analyze,在刚才Column statistics的上方就是one-way ANOVA。同样勾选所有组别。 bd160ff2cd4331c14c363faa0fb19b0e.png 接下来的弹窗,在第一个选项卡(实验设计)中,本例都是独立样本,所以选第一个,没有匹配。下边是否假设为高斯分布,刚才检验过了,选符合。 Tips:注意区别Prism中使用的两个很容易混淆的词组,replicate values和repeated (或matched、paired) measures。前者可以理解为独立样本,如本文每个实验都重复做至少3次,用分别制备的质粒和细胞,就属于replicate。如果同一份细胞检测处理前和处理后的蛋白表达,则属于时间上有匹配的样本,要选用repeated / matched / paired的相关算法,这个以后会说。 8e3374306b1a92d099987c19e3a339b1.png 第二个选项卡多重检验,选择各组间如何比较,都跟对照组比还是各组都两两比较,还是跟哪个特定组比。本例就选全都两两比较。 bdad7a8f4357854b9dd208d7bc69e5ef.png 但多组的两两比较会增加族错误率,所以要采取一些较正方法,通常用Bonferroni,也可以点开下拉框选择其他,比如Tukey、Sidak。下边控制假阳性率是Prism新增的方法,你也可以试试。 6e108699398c0c4c7c1eaa83cd79707c.png 点OK之后,结果中包含好几个表,先看ANOVA总表。上边的summary中的p值表示这些组是否有统计学差异,但具体在哪组还不知道。 下边的Brown-Forsythe检验即方差齐性检验(若每组都N>5,则还有Barttlet检验)。方差齐也是应用单因素ANOVA的前提之一,不齐则仍需做非参数检验。在SPSS里是要主动勾选是否做方差齐性检验的(用Levene法),而Prism则默默地算好了。 最后一句仍是直白提示,各组标准差没有显著差异,所以是可以继续应用ANOVA的结果的。 f9872891f0ac442cb9917949f755e8c8.png 所以接下来看下边的多重比较表: ceaa9bf869e493b29cf04eef4bf687fa.png 哪组跟哪组比、有没有差异、P值、可以打几个星号之类的细节都有了。这就可以标在图上了。(你问为啥跟示例图不一样?跟你讲了这是模拟数据不是原文数据嘛~) 在图上打标注的方法也很简单,就用工具栏上的画图和文字工具就可以了。 1f93ce15156bee7fa1509c152a87b9f1.png

思考题

MCF-7细胞用野生型(WT)和突变型(M)Vimentin promoter的荧光素酶质粒后,再分别进行和上题一样的过表达处理。 请用合适的统计方法对下列模拟数据进行分析: 1b8896a64a467ef25033a4d29bed9636.png a0c2ede0d47a394df0be7584fd0f5539.png 示例图还是来自上边那篇文献,PMID:28499590;Fig 2B 答案明天公布 8ddb10e90f0ca42fdf810c5237c53a38.png— END— 欢迎大家关注解螺旋生信频道-挑圈联靠公号~

        ae115701f8939ce77e76a5a83472043d.gif

5c112245ea934506ca2aa174f89c0767.png

f398fa9ae645d263104db615608ac210.png

                                                                        点下“在看”,多根头发5926c1d22242acb07e50585a3df9c8df.gif

### 回答1: GraphPad Prism是一款统计学软件,可用于分析显著性差异。它可以进行t检验、单因素方差分析、多因素方差分析等多种统计检验,并可视化输出结果。使用该软件可以帮助研究者确定两组或多组数据之间是否存在显著差异。 ### 回答2: GraphPad Prism是一款功能强大的统计分析软件,可以帮助科研工作者进行高效的数据分析和可视化呈现。其中一个常用的功能就是显著性差异分析,以下将详细介绍该功能的使用方法和解读结果。 一、显著性差异分析的步骤 1. 数据输入:首先,在 GraphPad Prism软件中,我们需要将待分析数据输入到数据表格中。在输入数据时,需要注意数据的格式和类型是否符合要求,如数据类型、变量类型等。同时,我们还可以利用软件的“Data Checklist”功能对数据进行检查,以确保数据无误。 2. 变量分组:接着,我们需要将数据按照实验组别分成不同的变量或子集。这一步操作可以在数据表格中实现,并且可以设置变量名称、标注等。分组时需要注意,组别之间需要明确的分类标准,如治疗组、对照组等。 3. 数据分布检查:在进行显著性差异分析之前,我们需要首先对数据的分布进行检查,以确定使用何种分析方法。这一步可以通过软件的“Descriptive Statistics”功能实现,可以了解数据的中心趋势、离散程度、峰度、偏度等统计指标。 4. 统计方法选择:根据数据的分布情况和实验设计的需要,我们选择合适的统计方法进行分析GraphPad Prism提供了多种统计方法,包括t检验、方差分析、卡方检验、线性回归等,这些方法适用于不同类型的数据和实验设计。 5. 结果解读:最后,我们需要对分析结果进行解读,并用图表直观呈现,可以选择支持显著性差异分析统计图表,如柱状图、折线图、散点图等。 二、显著性差异分析的结果解读 在 GraphPad Prism软件中进行显著性差异分析后,会得到一系列统计指标和P值,这些指标可以帮助我们判断实验组别之间的显著性差异。 1. 统计指标 常用的统计指标包括均值、标准差、标准误、置信区间、95%置信区间等。这些指标可以用于描述数据的分布情况和中心趋势。 2. P值 P值是显著性差异分析中的重要指标之一,表示数据之间的差异是否有统计学意义。P值越小,代表差异越显著,一般以0.05或0.01作为显著性水平来判断差异是否显著。 3. CL值 除了P值外,CL值也是一个常用的统计指标。CL值代表差异范围的可信程度,通常以95%的置信区间来表示。如果CL值不包含“0”,则说明差异显著;如果包含“0”,则说明差异不显著。 三、常用的显著性差异分析方法 1. t检验 t检验是用于比较两个样本平均值是否显著不同的方法,适用于正态分布或近似正态分布的数据。t检验包括独立样本t检验和配对样本t检验两种形式,具体应用根据实验的设计和数据的类型来选择。 2. 方差分析 方差分析是一种广泛应用于比较两组或多组平均值是否存在显著差异的方法,主要适用于多个组别的数据。方差分析可以根据实验设计的不同,分为单因素方差分析、多因素方差分析和重复测量数据的方差分析等多类方法。 3. 卡方检验 卡方检验是用于比较两个分类变量是否显著相关的方法,适用于分类数据或计数数据的分析。卡方检验包括卡方独立性检验和卡方拟合优度检验等多种形式,具体应用也要根据实验设计和数据的类型来选择。 四、总结 在科研实验中,显著性差异分析是必不可少的一个步骤,能够帮助我们判断实验组别之间的差异是否显著,为科研工作者提供了重要的统计支持。GraphPad Prism显著性差异分析功能简单易用,方便快捷,不需要编写复杂的统计代码,适用于各种类型的数据和实验设计。但我们需要注意选择合适的分析方法和解读统计指标,同时还要根据实验的具体设计和目的合理运用。 ### 回答3: GraphPad Prism是一款广泛用于统计分析的软件,其中最常用的是显著性差异分析显著性差异分析可以用来判断两个或多个数据组之间是否存在显著性差异。当数据集之间存在显著性差异时,我们可以在这些数据之间进行有意义的比较和探索。 在GraphPad Prism中,有多种方法可以用于显著性差异分析,如方差分析ANOVA)、t检验、Mann-Whitney U检验等。这些方法的选择取决于数据分布的类型和样本之间的关系。对于双变量数据,常用的t检验可以判断两组均值是否有显著性差异,而对于多个数据组之间的比较,则需要使用ANOVA方法。Mann-Whitney U检验则适用于非正态分布的数据。 在GraphPad Prism中,显著性差异分析结果包括统计值和p值。统计值通常是t值、F值或U值,用于衡量数据之间的差异程度。p值则用于判断差异是否具有显著性。通常认为p值小于0.05(或0.01)时具有显著性差异。 除了上述基本方法外,GraphPad Prism中还包括多种高级分析技巧,如多重比较、配对检验、线性回归等方法,可以更全面地了解并分析数据之间的关系。同时,GraphPad Prism还提供了直观的可视化图表,如柱状图、折线图和散点图等,可以直观地展示不同数据组之间的差异和关系。 总而言之,GraphPad Prism是一款强大的统计分析软件,可以用于各种类型的显著性差异分析,并且提供了多种高级分析方法和可视化图表,帮助用户更全面地了解和探索数据之间的关系。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值