squeezenet代码_【网络优化】超轻量级网络SqueezeNet算法详解

本文详细介绍了SqueezeNet网络结构,包括squeeze和expand部分,展示了如何通过fire模块减少参数数量。此外,文章还探讨了模型压缩技术,如裁剪、量化和编码,以进一步减小模型大小,同时保持与AlexNet相当的分类精度。通过Deep Compression,SqueezeNet模型的大小得以进一步压缩10倍。
摘要由CSDN通过智能技术生成

s

1

s_1

s1​: squeeze部分,1×1卷积层的通道数

e

1

e_1

e1​: expand部分,1×1卷积层的通道数

e

3

e_3

e3​: expand部分,3×3卷积层的通道数

输入输出尺寸相同。输入通道数不限,输出通道数为

e

1

+

e

3

e_1+e_3

e1​+e3​。
在本文提出的SqueezeNet结构中,

e

1

=

e

3

=

4

s

1

e_1=e_3= 4s_1

e1​=e3​=4s1​。

网络结构

整个网络包含10层。 第2到9层为fire模块(红色),每个模块内部先减少通道数(squeeze)再增加通道数(expamd)。每两个模块之后,通道数会增加。 第10层又是卷积层(蓝色),为小图的每个像素预测1000类分类得分。

ab3c11b1aeb6c60be33646421133f6ae.png

这是一个全卷积网络,避免了如今越来越不受待见的全连接层。由于最后一层提供了全图求平均操作,可以接受任意尺寸的输入。当然,输入还是需要归一化到大致相当的尺寸,保持统一尺度。

全连接层的参数多,对性能提升帮助不大,现在往往被pooling代替。

这个网络达到了和AlexNet相当的分类精度,但模型缩小了50倍:

architecture

model size

top-1 accuracy

top-5 accuracy

AlexNet

240MB

57.2%

80.3%

SqueezeNet

4.8MB

57.5%

80.3%

参数压缩

在网络结构确定的前提下,还可以进一步压缩其中的参数。本文使用了第二作者的Deep Compression[2](#fn2)方法,包含裁剪,量化,编码三个手段。

AlexNet中卷积层的weight、bias以及全连层参数分布如下所示。可以看出:全连层参数和卷积层weight占绝大多数,卷积层的bias只占极小部分。

bb1788e7d0b5ba054f69917c93c0186c.png

参数压缩针对卷积层的weight和全连层参数。每一层的参数单独压缩。

裁剪

由前图可以看出,绝大部分参数集中在0附近。

裁剪操作的第一步,把网络中所有绝对值小于门限的参数置0;非零参数再次训练进行优化。

dd9aa55c3f73406ec41b3b4f6ea61ab5.png

第二步,用下标方法表示剩余的参数:记录非零参数值和其在数组中的下标。

下标中相邻元素差值不会超过数组长度。为了进一步压缩,把下标表示成差分形式。

例:稀疏矩阵

[

0

0

0

0

5

8

0

0

0

0

3

0

0

6

0

0

]

\begin{bmatrix} 0 & 0 & 0 & 0 \\ 5 & 8 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 6 & 0 & 0\end{bmatrix}

⎣⎢⎢⎡​0500​0806​0030​0000​⎦⎥⎥⎤​

A = [ 5 8 3 6 ], IA = [4 5 10 13]

差分形式:IA = [4 1 5 3]

差分形式的IA动态范围大大缩小,可以用较少的比特数(4)进行编码。

当差值超出当前比特数能表示的范围后,在中间插入一个值为0的“非零元素”。

量化(Quantization)

首先,用K均值把所有参数聚成

2

n

2^n

2n个类。 最后,使用n比特编码的聚类中心替代原有参数。这里写图片描述

Deep Compression论文:卷积层,n=8; fc层,n=4。SqueezeNet中全部为卷积层,n=6。

问题:同类节点的梯度为什么相加?不是应该求平均吗?

编码(Huffman Encoding)

现在需要存储的主要数据有二:编码为n位的非零数据取值;编码为4位的非零元素下标。

这两者的分布都不均匀,可以使用Huffman编码进一步压缩存储。源码中没有实现。

模型存储结构

压缩后的二进制模型按层存储,当前层有nz个非零元素,分为如下4个部分:

name

type

size

note

codebook

float32

2^n

码书

bias

float32

输出通道数

无压缩

spm_stream

uint8

n z − 1 8 / n + 1 \frac{nz-1}{8/n}+1 8/nnz−1​+1

非零元素取值,n位编码$

ind_stream

uint8

n z − 1 8 / 4 + 1 \frac{nz-1}{8/4}+1 8/4nz−1​+1

非零元素下标,4位编码$

经过Deep Compression压缩,模型进一步缩小了10倍,仍然保持原有精度。

architecture

model size

top-1 accuracy

top-5 accuracy

AlexNet

240MB

57.2%

80.3%

SqueezeNet

4.8MB

57.5%

80.3%

SqueezeNet+DeepCompression

0.66MB

57.5%

80.3%

设计思路

本文还花费较大篇幅介绍了设计网络时的心得体会,颇具启发性。

参数组合

每层fire模块的三个参数如果单独设计,需要尝试的组合太多。需要使用超参数进行规划:

首个fire模块中包含base个3×3核;每隔freq个fire模块,3×3模块增加incre个。- expand部分中,3×3核占expand中核总数比例为pct。- squeeze中核数与expand中核数比例为sr。

sr和pct增大可以提升准确率,但模型尺寸增大。本文取sr=0.125,pct=0.5。

大尺度结构

在通道数相同的层之间,添加旁路相加结构可以明显提升准确性(源码未实现)。

171aa64302eaa2ed487e7be5bc9b95ea.png

带有卷积的旁路结构可以在任意层之间添加,准确性提升较小,模型增大。

f3a555ba71ae000d017f8d485565b805.png

压缩:有的放矢

问:如何确定哪些层不重要?

答:逐个将每一层50%参数置零,查看模型性能。对性能影响不大的层,不重要。

问:不重要的怎么办?

答:Deep Compression中使用较少比特数表达。

问:重要的层呢?

答:增加expand部分中的输出通道数,进一步提升准确率。

SDS训练法

本文还有一个神奇的发现:使用裁剪之后的模型为初始值,再次进行训练调优所有参数,正确率能够提升4.3%。

稀疏相当于一种正则化,有机会把解从局部极小中解放出来。这种方法称为DSD(dense->sparse->dense)。

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012. ↩︎ 1. Iandola, Forrest N., et al. “SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 1MB model size.” arXiv preprint arXiv:1602.07360 (2016). ↩︎

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值