矩阵乘积的行列式等于各自行列式的乘积

文章讨论了n阶方阵的行列式性质,指出|AB|=|A||B|这一结论。通过解释矩阵如何通过初等行变换与单位矩阵或零矩阵相联系,以及这些变换对行列式的影响,证明了当矩阵A可逆时,该性质成立。如果A不可逆,则|A|=0,因此|AB|=|A||B|=0。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A、B都是n阶方阵,有
∣ A B ∣ = ∣ A ∣ ∣ B ∣ |AB| = |A| |B| AB=A∣∣B

我们从最基本的地方想起: 一个 n × n n \times n n×n 方阵是怎么来的?

为了回答这个问题,需要我们逆向思考——对它进行行简约 , 也就是经过一系列行变换,使它变成最简行阶梯矩阵

这说明所有方阵,都可以从单位矩阵 I I I,或者最后一行为零行的方阵开始,经过一系列行变换形成。

而行变换归根结底只有3种(初等行变换):

  1. 将某一行的倍数加到另外一行;
  2. 两行互换;
  3. 给某一行乘上c。

给某矩阵 M M M 施加这3种变换,对其行列式的影响分别是:乘 1, 乘 -1, 乘 c。

假如矩阵 A 可逆,则 A 可以看作由单位矩阵I经过任意的初等行变换得来的,矩阵 B 左乘 A 就是给 B 施加一摸一样的初等行变换,最后得到的行列式的值自然就是原来B的行列式进行一系列乘1,乘-1,乘c 而得到的,而这一系列的乘1,乘-1,乘c 的操作自身的乘积就是矩阵 A 的行列式的值,也就是:

∣ A B ∣ = ∣ A ∣ ∣ B ∣ |AB| = |A||B| AB=A∣∣B

假如矩阵 A 不可逆,则 A 可以看作由最后一行全为0的最简阶梯矩阵经过一系列的变换得到。用这个最简阶梯矩阵左乘矩阵B,自然得到的矩阵最后一行也全为0,它不可逆,行列式为0,再经过同样的一系列的行变换也不会再改变行列式为0的值,即 ∣ A B ∣ = 0 |AB|=0 AB=0.

∣ A ∣ = 0 |A| = 0 A=0,所以
∣ A B ∣ = ∣ A ∣ ∣ B ∣ |AB| = |A| |B| AB=A∣∣B

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值