A、B都是n阶方阵,有
∣
A
B
∣
=
∣
A
∣
∣
B
∣
|AB| = |A| |B|
∣AB∣=∣A∣∣B∣
我们从最基本的地方想起: 一个 n × n n \times n n×n 方阵是怎么来的?
为了回答这个问题,需要我们逆向思考——对它进行行简约 , 也就是经过一系列行变换,使它变成最简行阶梯矩阵。
这说明所有方阵,都可以从单位矩阵 I I I,或者最后一行为零行的方阵开始,经过一系列行变换形成。
而行变换归根结底只有3种(初等行变换):
- 将某一行的倍数加到另外一行;
- 两行互换;
- 给某一行乘上c。
给某矩阵 M M M 施加这3种变换,对其行列式的影响分别是:乘 1, 乘 -1, 乘 c。
假如矩阵 A 可逆,则 A 可以看作由单位矩阵I经过任意的初等行变换得来的,矩阵 B 左乘 A 就是给 B 施加一摸一样的初等行变换,最后得到的行列式的值自然就是原来B的行列式进行一系列乘1,乘-1,乘c 而得到的,而这一系列的乘1,乘-1,乘c 的操作自身的乘积就是矩阵 A 的行列式的值,也就是:
∣ A B ∣ = ∣ A ∣ ∣ B ∣ |AB| = |A||B| ∣AB∣=∣A∣∣B∣
假如矩阵 A 不可逆,则 A 可以看作由最后一行全为0的最简阶梯矩阵经过一系列的变换得到。用这个最简阶梯矩阵左乘矩阵B,自然得到的矩阵最后一行也全为0,它不可逆,行列式为0,再经过同样的一系列的行变换也不会再改变行列式为0的值,即 ∣ A B ∣ = 0 |AB|=0 ∣AB∣=0.
又
∣
A
∣
=
0
|A| = 0
∣A∣=0,所以
∣
A
B
∣
=
∣
A
∣
∣
B
∣
|AB| = |A| |B|
∣AB∣=∣A∣∣B∣