矩阵特征值之和为主对角元素之和的证明

定理: A A A 是 n 阶矩阵, λ 1 , λ 2 , . . . , λ n \lambda_1,\lambda_2,...,\lambda_n λ1,λ2,...,λn 是矩阵 A A A 的特征值,则 ∑ λ i = ∑ a i i \sum \lambda_i = \sum a_{ii} λi=aii.

证明:

由于 λ 1 , λ 2 , . . . , λ n \lambda_1,\lambda_2,...,\lambda_n λ1,λ2,...,λn 是矩阵 A A A 的特征值,所以矩阵 A A A 的特征多项式可以表示为:
f ( λ ) = ( λ − λ 1 ) ( λ − λ 2 ) . . . ( λ − λ n ) f(\lambda) = (\lambda-\lambda_1)(\lambda-\lambda_2)...(\lambda-\lambda_n) f(λ)=(λλ1)(λλ2)...(λλn)

展开可得 λ n − 1 \lambda^{n-1} λn1 的系数为 − ( λ 1 + λ 2 + ⋯ + λ n ) -(\lambda_1 + \lambda_2 + \cdots + \lambda_n) (λ1+λ2++λn)

又矩阵的特征多项式定义为:

f ( λ ) = ∣ λ E − A ∣ = ∣ λ − a 11 − a 12 ⋯ − a 1 n − a 21 λ − a 22 ⋯ − a 2 n ⋮ ⋮ ⋱ ⋮ − a n 1 − a n 2 ⋯ λ − a n n ∣ f(\lambda)=|\lambda E- A| = \left | \begin{matrix} \lambda - a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & \lambda - a_{22} & \cdots & -a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n1} & -a_{n2} & \cdots & \lambda - a_{nn} \end{matrix} \right | f(λ)=λEA= λa11a21an1a12λa22an2a1na2nλann

根据矩阵行列式的定义,选取不同行不同列的元素作为一个乘积项,除了所有元素都是对角线元素的乘积项,其它的乘积项只可能使得 λ \lambda λ 的幂次小于等于 n − 2 n-2 n2。要出现 λ \lambda λ n − 1 n-1 n1 次项,只可能下出现在下面的乘积项中:

( λ − a 11 ) ( λ − a 22 ) ⋯ ( λ − a n n ) (\lambda-a_{11})(\lambda-a_{22})\cdots(\lambda-a_{nn}) (λa11)(λa22)(λann)

展开这个乘积项可得 λ n − 1 \lambda^{n-1} λn1 的系数为 − ( a 11 + a 22 + ⋯ + a n n ) -(a_{11}+a_{22}+\cdots+a_{nn}) (a11+a22++ann)

同一个行列式的特征多项式, λ n − 1 \lambda^{n-1} λn1的系数肯定相同,即:
− ( λ 1 + λ 2 + ⋯ + λ n ) = − ( a 11 + a 22 + ⋯ + a n n ) -(\lambda_1 + \lambda_2 + \cdots + \lambda_n) = -(a_{11}+a_{22}+\cdots+a_{nn}) (λ1+λ2++λn)=(a11+a22++ann)

也就是:

λ 1 + λ 2 + ⋯ + λ n = a 11 + a 22 + ⋯ + a n n \lambda_1 + \lambda_2 + \cdots + \lambda_n = a_{11}+a_{22}+\cdots+a_{nn} λ1+λ2++λn=a11+a22++ann

证毕。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值