定理: 设 A A A 是 n 阶矩阵, λ 1 , λ 2 , . . . , λ n \lambda_1,\lambda_2,...,\lambda_n λ1,λ2,...,λn 是矩阵 A A A 的特征值,则 ∑ λ i = ∑ a i i \sum \lambda_i = \sum a_{ii} ∑λi=∑aii.
证明:
由于
λ
1
,
λ
2
,
.
.
.
,
λ
n
\lambda_1,\lambda_2,...,\lambda_n
λ1,λ2,...,λn 是矩阵
A
A
A 的特征值,所以矩阵
A
A
A 的特征多项式可以表示为:
f
(
λ
)
=
(
λ
−
λ
1
)
(
λ
−
λ
2
)
.
.
.
(
λ
−
λ
n
)
f(\lambda) = (\lambda-\lambda_1)(\lambda-\lambda_2)...(\lambda-\lambda_n)
f(λ)=(λ−λ1)(λ−λ2)...(λ−λn)
展开可得 λ n − 1 \lambda^{n-1} λn−1 的系数为 − ( λ 1 + λ 2 + ⋯ + λ n ) -(\lambda_1 + \lambda_2 + \cdots + \lambda_n) −(λ1+λ2+⋯+λn)。
又矩阵的特征多项式定义为:
f ( λ ) = ∣ λ E − A ∣ = ∣ λ − a 11 − a 12 ⋯ − a 1 n − a 21 λ − a 22 ⋯ − a 2 n ⋮ ⋮ ⋱ ⋮ − a n 1 − a n 2 ⋯ λ − a n n ∣ f(\lambda)=|\lambda E- A| = \left | \begin{matrix} \lambda - a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & \lambda - a_{22} & \cdots & -a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n1} & -a_{n2} & \cdots & \lambda - a_{nn} \end{matrix} \right | f(λ)=∣λE−A∣= λ−a11−a21⋮−an1−a12λ−a22⋮−an2⋯⋯⋱⋯−a1n−a2n⋮λ−ann
根据矩阵行列式的定义,选取不同行不同列的元素作为一个乘积项,除了所有元素都是对角线元素的乘积项,其它的乘积项只可能使得 λ \lambda λ 的幂次小于等于 n − 2 n-2 n−2。要出现 λ \lambda λ 的 n − 1 n-1 n−1 次项,只可能下出现在下面的乘积项中:
( λ − a 11 ) ( λ − a 22 ) ⋯ ( λ − a n n ) (\lambda-a_{11})(\lambda-a_{22})\cdots(\lambda-a_{nn}) (λ−a11)(λ−a22)⋯(λ−ann)
展开这个乘积项可得 λ n − 1 \lambda^{n-1} λn−1 的系数为 − ( a 11 + a 22 + ⋯ + a n n ) -(a_{11}+a_{22}+\cdots+a_{nn}) −(a11+a22+⋯+ann)。
同一个行列式的特征多项式,
λ
n
−
1
\lambda^{n-1}
λn−1的系数肯定相同,即:
−
(
λ
1
+
λ
2
+
⋯
+
λ
n
)
=
−
(
a
11
+
a
22
+
⋯
+
a
n
n
)
-(\lambda_1 + \lambda_2 + \cdots + \lambda_n) = -(a_{11}+a_{22}+\cdots+a_{nn})
−(λ1+λ2+⋯+λn)=−(a11+a22+⋯+ann)
也就是:
λ 1 + λ 2 + ⋯ + λ n = a 11 + a 22 + ⋯ + a n n \lambda_1 + \lambda_2 + \cdots + \lambda_n = a_{11}+a_{22}+\cdots+a_{nn} λ1+λ2+⋯+λn=a11+a22+⋯+ann
证毕。