深度卷积神经网络的概念
深度学习是机器学习的一个重要分支,源于人工神经网络的研究。
深度学习的模型结构是一种含多个隐藏层的神经网络。
而多层神经网络目前效果比较好的卷积神经网络,在图像处理和音频处理上效果较好。
卷积神经网络是一类包含卷积算法且具有深度结构的前馈神经网络,是深度学习的代表算法之一。
卷积神经网络通过卷积和池化操作自动学习图像在各个层次上的特征,这符合我们理解图像的常识。人在认知图像时是分层抽象的,首先理解的是颜色和亮度,然后是边缘、角点,直线等局部细节特征,接下来是纹理、几何形状等更复杂的信息和结构,最后形成整个物体的概念。
卷积层是用卷积核依次与图像的每个像素做乘积。得到特征图。池化处理也叫作降采样处理,是对不同位置的特征进行聚合统计。可以减少参数数量,减小图像尺寸,避免过拟合。
卷积神经网络的构成
卷积层是DCNN的核心结构,由若干个卷积单元构成,目的是提取输入图像的不同特征。
N=(W-F+2P)/S+1
激活函数:
神经网络中的卷积操作是属于线性操作,因为线性模型的表达能力不够。
激活函数为神经网络引入非线性,使得网络能够学习和模拟复杂的函数映射。如果没有非线性激活函数,无论神经网络有多少层,其整体都相当于一个线性模型,这将极大地限制模型的表达能力。
假设我们有一个简单的神经网络,它包含一个输入层、一个或多个隐藏层和一个输出层。如果我们在所有层中只使用线性激活函数,那么每个神经元的输出可以表示为:
𝑧=𝑤⋅𝑥+𝑏z=w⋅x+b
其中,𝑧z 是当前神经元的输出,