机器学习系列2:几种常见的boosting

本文介绍了Boosting算法作为模型集成的一种方法,强调通过连续迭代改进预测效果。内容涵盖Ada Boost、Gradient Boosting及其应用,特别是Gradient Boosted Decision Trees (GBDT)和LightGBM的特性与优势。
摘要由CSDN通过智能技术生成

几种常见的boosting

  • Boosting

很多时候单一模型不够稳定或者得出的结果不够好,需要进行模型集成(assemble),即用多种模型进行预测。集成方法分为bagging和 boosting两种。以下介绍boosting.

 

You can view Boosting as a linear regression combination of many models

 FmX=a0f0(X)+a1f1(X)+…+amfm(X)

It is stage-wise optimized algorithm

Learn F0, then F1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值