时间复杂度的规则与计算

 

1. 分析算法时,存在几种可能的考虑:

  • 算法完成工作最少需要多少基本操作,即最优时间复杂度
  • 算法完成工作最多需要多少基本操作,即最坏时间复杂度
  • 算法完成工作平均需要多少基本操作,即平均时间复杂度 

        对于最优时间复杂度,其价值不大,因为它没有提供什么有用信息,其反映的只是最乐观最理想的情况,没有参考价值。

        对于平均时间复杂度,是对算法的一个全面评价,因此它完整全面的反映了这个算法的性质。但另一方面,这种衡量并没有保证,不是每个计算都能在这个基本操作内完成。而且,对于平均情况的计算,也会因为应用算法的实例分布可能并不均匀而难以计算。

        对于最坏时间复杂度,提供了一种保证,表明算法在此种程度的基本操作中一定能完成工作。

        因此,我们主要关注算法的最坏情况,亦即最坏时间复杂度。

2. 时间复杂度的几条基本计算规则

  1. 基本操作,即只有常数项,认为其时间复杂度为O(1)
  2. 顺序结构,时间复杂度按加法进行计算
  3. 循环结构,时间复杂度按乘法进行计算
  4. 分支结构,时间复杂度取最大值
  5. 判断一个算法的效率时,往往只需要关注操作数量的最高次项,其它次要项和常数项可以忽略
  6. 在没有特殊说明时,我们所分析的算法的时间复杂度都是指最坏时间复杂度

3. 常见时间复杂度

执行次数函数举例非正式术语
12O(1)常数阶
2n+3O(n)线性阶
3n2+2n+1O(n2)平方阶
5log2n+20O(logn)对数阶
2n+3nlog2n+19O(nlogn)nlogn阶
6n3+2n2+3n+4O(n3)立方阶
2nO(2n)指数阶

注意,经常将log2n(以2为底的对数)简写成logn

4. 常见时间复杂度之间的关系

所消耗的时间从小到大

O(1) < O(logn) < O(n) < O(nlogn) < O(n2) < O(n3) < O(2n) < O(n!) < O(nn)

5. 例题: 

        题: 如果 a+b+c=1000,且 a^2+b^2=c^2(a,b,c 为自然数),如何求出所有a、b、c可能的组合?

    法1:

#coding=utf-8

import time

#开始时间
start_time = time.ctime();
print("start time: %s" %start_time)

for i in range(0, 1001): # 复杂度 n
    for j in range(0, 1001): # 复杂度 n*n
        for k in range(0, 1001): # 复杂度 n*n*n(max(1, 0)) = n^3
            if i+j+k==1000 and i**2+j**2==k**2:
                print("i-j-k: %d-%d-%d" %(i,j,k))
#结束时间
end_time = time.ctime()
print("end_time: %s" %end_time)


#所以最坏时间复杂度为
# T(n) = n*n*n(max(1, 0)) = n^3

    法2:

#coding=utf-8

import time

start_time = time.ctime();
print("start time: %s" %start_time)

for i in range(0, 1001): # 复杂度 n
    for j in range(0, 1001): # 复杂度 n*n
        k = 1000-i-j            # 复杂度 n*n*(1+max(1, 0))
        if i**2+j**2==k**2:
            print("i-j-k: %d-%d-%d" % (i, j, k))
        
end_time = time.ctime()
print("end_time: %s" %end_time)

#最坏时间复杂度
# T(n) = n*n*(1+ max(1, 0)) = n^2*2 = O(n^2)

        法1(n^3) 和 法2(n^2) 两者执行时间相差很大, 所以一个好的时间复杂度的程序对于程序效率的提升是很好的!

### 回答1: 时间复杂度算法执行所需时间的增长率,通常用大O表示法表示。计算时间复杂度的具体过程如下: 1. 确定算法的基本操作:算法中最频繁执行的基本操作是什么,例如赋值、比较、计算等。 2. 确定算法的输入规模:输入规模是指算法输入数据的大小,例如数组的长度、矩阵的行列数等。 3. 对算法进行分析:根据算法的基本操作和输入规模,分析算法的执行次数,并将其表示成一个关于输入规模的函数。 4. 简化算法分析结果:对于一个算法,可能存在多个执行次数不同的基本操作,因此需要将算法的执行次数简化为一个最坏情况下的执行次数。 5. 求解时间复杂度:将简化后的执行次数表示成一个关于输入规模的函数,去掉常数项和低次项,得到算法时间复杂度。 例如,对于一个长度为n的数组进行冒泡排序,基本操作是比较和交换,执行次数为n^2,因此时间复杂度为O(n^2)。 ### 回答2: 时间复杂度是衡量算法运行效率的重要指标,它表示随着问题规模的增大,算法执行时间的增长情况。具体计算过程如下: 首先,可以根据算法的伪代码或具体实现代码,找出算法中的基本操作数量。 其次,确定每种基本操作的执行次数和其所需的时间复杂度。常见的基本操作包括:赋值语句、算术运算、比较运算、条件判断、循环等。 然后,将每种基本操作的执行次数与其对应的时间复杂度乘,得到每种操作的总时间复杂度。 接着,找到所有基本操作中执行次数最多的那个,并将其时间复杂度作为整个算法时间复杂度。 最后,将算法时间复杂度进行简化。常见的时间复杂度有:常数阶O(1)、对数阶O(logn)、线性阶O(n)、线性对数阶O(nlogn)、平方阶O(n²)、立方阶O(n³)等。 需要注意的是,时间复杂度计算是基于算法的最坏情况下运行时间的估计,不考虑具体输入数据的大小或其他因素。 总结来说,时间复杂度的具体计算过程包括:分析算法中的基本操作数量、确定每种操作的执行次数和时间复杂度计算每种操作的总时间复杂度、找出最大的操作次数作为整体时间复杂度,并对时间复杂度进行简化。这个过程可以帮助我们评估算法的运行效率,选择更高效的算法来解决问题。 ### 回答3: 时间复杂度是衡量算法效率的一个重要指标,它描述了算法运行时间与输入规模增长的关系。下面是计算时间复杂度的具体过程。 首先,我们可以通过查看算法中的循环结构来确定时间复杂度。以循环的执行次数作为衡量标准,可以得到一个简化的公式。 其次,我们需要分析每个循环结构的执行次数与输入规模之间的关系。通常,循环的执行次数取决于循环变量的取值范围或循环条件的满足情况。对于每个循环,我们需要考虑它的最好情况、最坏情况和平均情况下的执行次数。 然后,我们将每个循环结构的执行次数与其他语句的执行次数加,得到整个算法的执行次数。在这个过程中,我们需要注意一些常见的操作所带来的时间代价,例如循环嵌套、递归调用、条件判断等。 最后,我们通过分析执行次数的增长趋势来确定最终的时间复杂度。通常,我们会忽略低阶项和常数系数,只考虑随着输入规模增长而呈现的最高次项。常见的时间复杂度有常数时间O(1)、线性时间O(n)、对数时间O(log n)、平方时间O(n^2)等。 在实际计算过程中,我们可以使用一些常见的运算规则和近似估计方法来简化复杂的分析,例如忽略常数项、取最高次项等。同时,我们还可以结合具体需求和实际情况,选择更加准确和合适的时间复杂度描述算法的效率。 通过以上的具体计算过程,我们可以得到一个描述算法效率的时间复杂度,用来评估算法在处理不同规模输入时的性能表现。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值