1. 分析算法时,存在几种可能的考虑:
- 算法完成工作最少需要多少基本操作,即最优时间复杂度
- 算法完成工作最多需要多少基本操作,即最坏时间复杂度
- 算法完成工作平均需要多少基本操作,即平均时间复杂度
对于最优时间复杂度,其价值不大,因为它没有提供什么有用信息,其反映的只是最乐观最理想的情况,没有参考价值。
对于平均时间复杂度,是对算法的一个全面评价,因此它完整全面的反映了这个算法的性质。但另一方面,这种衡量并没有保证,不是每个计算都能在这个基本操作内完成。而且,对于平均情况的计算,也会因为应用算法的实例分布可能并不均匀而难以计算。
对于最坏时间复杂度,提供了一种保证,表明算法在此种程度的基本操作中一定能完成工作。
因此,我们主要关注算法的最坏情况,亦即最坏时间复杂度。
2. 时间复杂度的几条基本计算规则
- 基本操作,即只有常数项,认为其时间复杂度为O(1)
- 顺序结构,时间复杂度按加法进行计算
- 循环结构,时间复杂度按乘法进行计算
- 分支结构,时间复杂度取最大值
- 判断一个算法的效率时,往往只需要关注操作数量的最高次项,其它次要项和常数项可以忽略
- 在没有特殊说明时,我们所分析的算法的时间复杂度都是指最坏时间复杂度
3. 常见时间复杂度
执行次数函数举例 | 阶 | 非正式术语 |
---|---|---|
12 | O(1) | 常数阶 |
2n+3 | O(n) | 线性阶 |
3n2+2n+1 | O(n2) | 平方阶 |
5log2n+20 | O(logn) | 对数阶 |
2n+3nlog2n+19 | O(nlogn) | nlogn阶 |
6n3+2n2+3n+4 | O(n3) | 立方阶 |
2n | O(2n) | 指数阶 |
注意,经常将log2n(以2为底的对数)简写成logn
4. 常见时间复杂度之间的关系
所消耗的时间从小到大
O(1) < O(logn) < O(n) < O(nlogn) < O(n2) < O(n3) < O(2n) < O(n!) < O(nn)
5. 例题:
题: 如果 a+b+c=1000,且 a^2+b^2=c^2(a,b,c 为自然数),如何求出所有a、b、c可能的组合?
法1:
#coding=utf-8
import time
#开始时间
start_time = time.ctime();
print("start time: %s" %start_time)
for i in range(0, 1001): # 复杂度 n
for j in range(0, 1001): # 复杂度 n*n
for k in range(0, 1001): # 复杂度 n*n*n(max(1, 0)) = n^3
if i+j+k==1000 and i**2+j**2==k**2:
print("i-j-k: %d-%d-%d" %(i,j,k))
#结束时间
end_time = time.ctime()
print("end_time: %s" %end_time)
#所以最坏时间复杂度为
# T(n) = n*n*n(max(1, 0)) = n^3
法2:
#coding=utf-8
import time
start_time = time.ctime();
print("start time: %s" %start_time)
for i in range(0, 1001): # 复杂度 n
for j in range(0, 1001): # 复杂度 n*n
k = 1000-i-j # 复杂度 n*n*(1+max(1, 0))
if i**2+j**2==k**2:
print("i-j-k: %d-%d-%d" % (i, j, k))
end_time = time.ctime()
print("end_time: %s" %end_time)
#最坏时间复杂度
# T(n) = n*n*(1+ max(1, 0)) = n^2*2 = O(n^2)