离散型概率分布

目录

1.1 随机变量

1.2 离散型概率分布

1.3 数学期望与方差、标准差

1.3.1 数学期望

1.3.2 方差

1.3.3 标准差

1.3.4 线性变换的通用公式

1.3.5 独立观测值

1.4 二项概率分布(binomial probability distribution)

1.5 泊松概率分布(poisson probability distribution)

1.6 超几何概率分布(hypergeometric probability distribution)

1.7 几何分布(Geometric distribution)


1.1 随机变量

随机变量(random variable)是对一个试验结果的数值描述,是一个可以等于一系列数值的变量。

而这一系列数值的每一个值都与一个特定概率相关联。

离散型随机变量:可以取有限多个数值或无限可数多个数值的随机变量

连续型随机变量:可以在某一区间或多个区间内任意取值的随机变量

1.2 离散型概率分布

随机变量的概率分布(probability distribution)是描述随机变量取不同值的概率。

对于离散型随机变量x,概率函数给出随机变量取每一种值的概率,记f(x)

离散型概率函数的基本条件

(1)    f(x)\geq 0    对于任意随机变量的取值,函数值都是大于等于0

(2)   \sum f(x) = 1 随机变量的所有取值对应的概率之和为1

1.3 数学期望与方差、标准差

1.3.1 数学期望

随机变量的数学期望或均值是对随机变量中心位置的一种度量。

离散型随机变量的数学期望:

E(x) = \mu = \sum x f(x)

数学期望和均值有点儿像,甚至计算方法也相似,但数学期望描述的是概率分布。

1.3.2 方差

方差用来描述随机变量取值的变异性

离散型随机变量的方差:

Var(x) = \sigma ^{2} =\sum (x-\mu ) ^{2} f(x)

方差公式的关键是 离差(x-u),它度量了随机变量某一特定值与数学期望或均值u的距离。

1.3.3 标准差

概率分布的标准差,度量了数据与数据中心的数学期望的距离。

标准差取方差的平方根。

\sigma =\sqrt{Var(x)}

1.3.4 线性变换的通用公式

若随机变量为X:

E(aX+b) = aE(x)+b   -- 期望乘以a,然后加b

Var(aX+b) = a^{^{2}}Var(X)   -- 取a的平方,乘以X的方差,忽略b

1.3.5 独立观测值

X的独立观测值与X不同,每个观测值都具有相同的概率分布,但结果各不一样。

比如,抛硬币,连续抛几次,每一次抛硬币的结果称为一个观测值,每一个观测值具有相同的期

  • 3
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值