【季节性预测法 - 时间序列分解法】利用excel进行复合型时间序列的分解预测

本文通过季节性预测法,利用Excel对啤酒销售数据进行时间序列分解,包括绘制时间序列图、确定季节成分、计算季节指数、分离季节成分、建立预测模型,最终预测2016年各季度销量,结果显示预测效果良好。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

希望我整理的内容对路过的你有所帮助,点赞或评论,都是相互的鼓励~

 

【问题】根据下图中某啤酒生产企业2010-2015年各季度的销售量数据,预测2016年各季度产量

1. 绘制时间序列图,观察啤酒销售量的构成要素

 从上图可以明显看出,啤酒销售量具有明显季节成分,而且后面年份销量比前面年份高,因此其中含有趋势成分,但其周期性难以判断。可以认定啤酒销售量序列是一个含有季节性成分和趋势成分的时间序列。

2. 确定季节成分,计算季节指数

2.1 计算移动平均值

-- 对于季节数据,从2010年1季度开始,每4个季度计算4项移动平均,如:

年份/季度 4项移动平均计算 4项移动平均值

4项移动平均

   对应季度

2010/1, 2010/2,2010/3, 2010/4 (25.0+32.0+37.0+26.0) / 4 30.00 2.50
2010/2,2010/3, 2010/4, 2011/1 (32.0+37.0+26.0+30.0) / 4 31.25 3.50
2010/3, 2010/4, 2011/1, 2011/2 (37.0+26.0+30.0+38.0) / 4 32.75 4.50

这里出现的问题是,计算出的4项移动平均,没有对应着具体的某个季度,而是在季度之间!

为了解决这个问题,需要进行中心化处理。

-- 对计算结果进行中心化处理,也就是再进行一次二项移动平均,得出中心化移动平均值CMA。

这样处理之后,移动平均值便对应具体季度。思路如下(给我自己做的图点赞❤):

按照上述思路,计算出的中心化移动平均值CMA情况如下:

年份 时间代码 销售量 4项移动平均 中心化移动平均值
CMA
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值