线性代数中的克莱姆法则与几何解释

克莱姆法则在解决变量与方程数目相等的线性方程组时,提供了解的理论基础和独特见解。通过分块矩阵和向量代数角度,解析克莱姆法则的计算过程,揭示其几何意义。然而,法则存在局限性,如运算量大、不适合非齐次方程组,以及在数值稳定性方面的不足。
摘要由CSDN通过智能技术生成

线性代数中的克莱姆法则与几何解释

克莱姆法则研究了方程组的系数与方程组解的存在性与唯一性关系;
与其在计算方面的作用相比,克莱姆法则更具有重大的理论价值-百度百科-克莱姆法则

  • Cramer’s Rule(克莱姆法则)是线性代数理论中的基础定理之一
  • 克莱姆法则适用于求解变量和方程数目相等的线性方程组
  • 理解克莱姆法则,可以帮助我们加深对线性方程组的理解

##记号说明与克莱姆法则的定义
本文中记号说明:

  • A: n行n列矩阵;
  • x x x:未知n维列向量;
  • b b b:已知n维列向量
  • I I I:n维单位矩阵
  • A ( i ) ← b A(i) \leftarrow b A(i)b 表示矩阵A第 i 列被列向量 b 替换掉的矩阵

克莱姆法则:
A x x x= b b b 齐次线性方程组
A 非奇异 ( ∣ A ∣ ≠ 0 |A| \neq 0 A=0 )
x i = ∣ A ( i ) ← b ∣ ∣ A ∣ x_i = \frac{|A(i) \leftarrow b|}{|A|} xi=AA(i)b,其中 A(i) 表示矩阵 A 的第i列(行列式 |A| 的定义可见线性代数或百度百科:行列式


##从分块矩阵角度来看克莱姆法则

考虑一个新的矩阵 I ( i ) ← x I(i) \leftarrow x I(i)x,利用分块矩阵乘法,有
A [ I ( i ) ← x ] = A ( i ) ← b . A[I(i) \leftarrow x] = A(i) \leftarrow b. A[I(i)x]=A(i)b.
等式两边同时取行列式,得
∣ A ∣ ∣ I ( i ) ← x ∣ = ∣ A ( i ) ← b ∣ . |A||I(i) \leftarrow x| = |A(i) \leftarrow b|. AI(i)x=A(i)b.
∣ I ( i ) ← x ∣ = x i |I(i) \leftarrow x| = x_i I(i)x=xi(以第 i i i 行展开即可), 因此 当 A 非奇异时, x i = ∣ A ( i ) ← b ∣ ∣ A ∣ . x_i = \frac{|A(i) \leftarrow b|}{|A|}. xi=AA(i)b.

##从向量代数角度来看克莱姆法则
当n=2时, 有A x x x= b b b,具体形式是二元线性方程组:
{ a 11 x 1 + a 12 x 2 = b 1 a 21 x 1 + a 22 x 2 = b 2 \left\{ \begin{array}{lr} a_{11} x_1 +a_{12} x_2 = b_1 & \\ a_{21} x_1 +a_{22} x_2 = b_2& \end{array} \right. { a11x1+a12x2=b1a21x1+a22x2=b2
其中 ∣ A ∣ ≠ 0 |A| \neq 0 A=0,即$ a_{11} a_{22}- a_{12} a_{21} \neq 0$. 将其写成向量的形式,
x 1 a 1 + x 2 a 2 = b (1) x_1 a_1 + x_2 a_2 = b \tag 1 x1a1+x2a2=b(1)
其中, a 1 , a 2 a_1,a_2 a1

  • 6
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,以下是一道线性代数使用克莱法则求解的例题: 假设有如下线性方程组: 2x + 3y - z = 7 x - y + 2z = -1 3x + 2y - 4z = 4 我们可以将其写成矩阵形式: | 2 3 -1 | | x | | 7 | | 1 -1 2 | x | y | = |-1| | 3 2 -4 | | z | | 4 | 使用克莱法则,我们可以通过求解系数矩阵的行列式和各个未知数对应的代数余子式来求解该方程组。 首先,我们求解系数矩阵的行列式: | 2 3 -1 | | 1 -1 2 | | 3 2 -4 | 通过对第一列展开,我们可以得到: det(A) = 2 * (-1)^(1+1) * det(A11) - 1 * (-1)^(2+1) * det(A21) + 3 * (-1)^(3+1) * det(A31) = 2 * (-1) * (-6) - 1 * (-1) * (-7) + 3 * (-1) * (-4) = -12 + 7 - 12 = -17 其,A11、A21、A31 分别表示将第一列去掉后得到的 2x2 子矩阵的行列式。 接下来,我们求解各个未知数对应的代数余子式: A_x = | 7 3 -1 | |-1 -1 2 | | 4 2 -4 | A_y = | 2 7 -1 | | 1 -1 2 | | 3 4 -4 | A_z = | 2 3 7 | | 1 -1 -1 | | 3 2 4 | 其,A_x 表示将系数矩阵 x 列替换成方程组右侧的常数列后得到的 3x3 子矩阵的行列式,A_y 和 A_z 同理。 最后,我们可以通过以下公式求解各个未知数的值: x = A_x / det(A) y = A_y / det(A) z = A_z / det(A) 将代数余子式代入公式,我们可以得到: x = (-23) / (-17) = 1.35 y = (-15) / (-17) = 0.88 z = (-11) / (-17) = 0.65 因此,该线性方程组的解为 x = 1.35,y = 0.88,z = 0.65。 希望以上解答能够帮助您理解线性代数使用克莱法则求解的过程。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值