克莱姆法则的几何解释(视频见b站)

本文探讨了线性方程组的求解方法,指出高斯消元法相对于克莱姆法则在某些情况下的优势。高斯消元提供了一种直观理解线性系统的途径,而克莱姆法则适用于未知数等于方程数的方阵情况。补充说明中提到了正交变换的概念,强调了保持向量长度和相互垂直性的性质,并通过变换矩阵示例解释了如何从已知输出向量求解原始坐标。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文在于快速get核心点,视频请见:
【官方双语/合集】线性代数的本质 - 系列合集_哔哩哔哩_bilibilihttps://www.bilibili.com/video/BV1ys411472E?p=16高斯消元法比克莱姆法则更快,这里作为一个视野拓展以加深对线性方程组的直观理解。

克莱姆法则适用于方阵,即未知数等于方程数

【补     充】不改变点积的变换为正交变换(Orthonormal transformation), T(\vec{v})\cdot T(\vec{w})=\vec{v}\cdot \vec{w},他们使基向量在变换后依然保持单位长度,且相互垂直。

假设\vec{i}=\begin{bmatrix} 1\\0 \end{bmatrix}逆时针180度以内可以旋转可以与\vec{k}=\begin{bmatrix} x\\y \end{bmatrix}共射线,可以保证\vec{i}\times \vec{k}=y>0,即两向量的有向面积大于0。其实就是底为1,高为y的平行四边形。

现有一个变换矩阵\begin{bmatrix} 2 &-1 \\ 0 & 1 \end{bmatrix},将\vec{i}变为{\vec{i}}'=\begin{bmatrix} 2 &-1 \\ 0 & 1 \end{bmatrix}\begin{bmatrix} 1\\0 \end{bmatrix}=\begin{bmatrix} 2\\0 \end{bmatrix},\vec{k}变为{\vec{k}}'=\begin{bmatrix} 2 &-1 \\ 0 & 1 \end{bmatrix}\begin{bmatrix} x\\y \end{bmatrix}=\begin{bmatrix} 4\\2 \end{bmatrix},那么{\vec{i}}'\times {\vec{k}}'=\begin{vmatrix} A \end{vmatrix}y,那么y =\frac{\begin{vmatrix} 2 &{\color{Red} 4} \\ 0 & {\color{Red} 2} \end{vmatrix}}{\begin{vmatrix} A \end{vmatrix}} =\frac{\begin{vmatrix} 2 & {\color{Red} 4} \\ 0 & {\color{Red} 2} \end{vmatrix}}{\begin{vmatrix} 2 &-1 \\ 0 & 1 \end{vmatrix}}也就是说已知变换矩阵以及输出的向量即可求出对应的坐标同理x=\frac{\begin{vmatrix} \begin{bmatrix} {\color{Red} 4} &-1 \\ {\color{Red} 2} & 1 \end{bmatrix} \end{vmatrix}}{\begin{vmatrix} \begin{bmatrix} 2 &-1 \\ 0 & 1 \end{bmatrix} \end{vmatrix}}。三维向量亦是如此。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值