本文在于快速get核心点,视频请见:
【官方双语/合集】线性代数的本质 - 系列合集_哔哩哔哩_bilibilihttps://www.bilibili.com/video/BV1ys411472E?p=16高斯消元法比克莱姆法则更快,这里作为一个视野拓展以加深对线性方程组的直观理解。
克莱姆法则适用于方阵,即未知数等于方程数
【补 充】不改变点积的变换为正交变换(Orthonormal transformation), ,他们使基向量在变换后依然保持单位长度,且相互垂直。
假设逆时针180度以内可以旋转可以与
共射线,可以保证
,即两向量的有向面积大于0。其实就是底为1,高为y的平行四边形。
现有一个变换矩阵,将
变为
,
变为
,那么
,那么
,也就是说已知变换矩阵以及输出的向量即可求出对应的坐标。同理
。三维向量亦是如此。