克隆图-java解法
给你无向 连通 图中一个节点的引用,请你返回该图的 深拷贝(克隆)。
图中的每个节点都包含它的值 val(int) 和其邻居的列表(list[Node])。
Given a reference of a node in a connected undirected graph.
Return a deep copy (clone) of the graph.
Each node in the graph contains a val (int) and a list (List[Node]) of its neighbors.
class Node {
public int val;
public List<Node> neighbors;
}
测试用例格式:
简单起见,每个节点的值都和它的索引相同。例如,第一个节点值为 1(val = 1),第二个节点值为 2(val = 2),以此类推。该图在测试用例中使用邻接列表表示。
邻接列表 是用于表示有限图的无序列表的集合。每个列表都描述了图中节点的邻居集。
给定节点将始终是图中的第一个节点(值为 1)。你必须将 给定节点的拷贝 作为对克隆图的引用返回。
示例 1:
输入:adjList = [[2,4],[1,3],[2,4],[1,3]]
输出:[[2,4],[1,3],[2,4],[1,3]]
解释:
图中有 4 个节点。 节点 1 的值是 1,它有两个邻居:节点 2 和 4 。 节点 2 的值是 2,它有两个邻居:节点 1 和 3.节点 3 的值是 3,它有两个邻居:节点 2 和 4 。 节点 4 的值是 4,它有两个邻居:节点 1 和 3 。
示例 2:
输入:adjList = [[]]
输出:[[]]
解释:输入包含一个空列表。该图仅仅只有一个值为 1 的节点,它没有任何邻居。
示例 3:
输入:adjList = []
输出:[]
解释:
这个图是空的,它不含任何节点。
示例 4:
输入:adjList = [[2],[1]]
输出:[[2],[1]]
提示:
节点数不超过 100 。
每个节点值 Node.val 都是唯一的,1 <= Node.val <= 100。
无向图是一个简单图,这意味着图中没有重复的边,也没有自环。
由于图是无向的,如果节点 p 是节点 q 的邻居,那么节点 q 也必须是节点 p 的邻居。
图是连通图,你可以从给定节点访问到所有节点。
通过次数30,196提交次数49,998
解法:
深度优先遍历:
- 使用一个哈希表存储所有已被访问和克隆的节点。哈希表中的 key 是原始图中的节点,value 是克隆图中的对应节点。
- 从给定节点开始遍历图。如果某个节点已经被访问过,则返回其克隆图中的对应节点。防止产生循环访问。
- 如果当前访问的节点不在哈希表中,则创建它的克隆节点并存储在哈希表中。注意:在进入递归之前,必须先创建克隆节点并保存在哈希表中。如果不保证这种顺序,可能会在递归中再次遇到同一个节点,再次遍历该节点时,陷入死循环。
- 递归调用每个节点的邻接点。每个节点递归调用的次数等于邻接点的数量,每一次调用返回其对应邻接点的克隆节点,最终返回这些克隆邻接点的列表,将其放入对应克隆节点的邻接表中。这样就可以克隆给定的节点和其邻接点。
代码:
class Solution {
private Map<Node,Node> visted = new HashMap<>();
public Node cloneGraph(Node node) {
if(node == null){
return node;
}
if(visted.containsKey(node)){
return visted.get(node);
}
Node cloneNode = new Node(node.val,new ArrayList());
visted.put(node,cloneNode);
for(Node neighbor:node.neighbors){
cloneNode.neighbors.add(neighbor);
}
return cloneNode;
}
}