解决cuda和tensorflow版本匹配的问题

我的tensorflow是1.15.0版本,所以最高支持10.0,10.1以上的都不能兼容。

我在官网下载的版本是最新版CUDA10.2,唉哭了。希望大家还是下载10.0版本的吧。不用这么麻烦,tensorflow最多只匹配到了CUDA10.1。

如果因为下载10.2,导致tf.test.is_gpu_available() 返回 false。为了解决这个问题,回到cmd的界面,输入

python,回车

import tensorflow as tf 回车

最后可以成功但是会提示你没有找到cudart64_101.dll

 Could not load dynamic library ‘cudart64_101.dll’

为了不想再重装一遍,修改cudart64_10*.dll文件的名字:

首先找到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\bin,如果是默认的安装路径,如果你改了,就找到NVIDIA GPU Computing Toolkit\CUDA\v10.2\bin这个路径下面的dll文件。找到后缀所有是101或者102的

修改成cudart64_101.dll(当然这个要看报错,如果是没有找到cudart64_100.dll,就改成100,最后true了)

### 回答1: 下面是CUDATensorFlow版本之间的对应关系: | TensorFlow版本 | CUDA支持的版本 | |----------------|---------------| | 2.5.x | 11.2 | | 2.4.x | 11.0 | | 2.3.x | 10.1 | | 2.2.x | 10.1 | | 2.1.x | 10.0 | | 2.0.x | 10.0 | | 1.15.x | 10.0 | | 1.14.x | 10.0 | | 1.13.x | 9.0 | | 1.12.x | 9.0 | | 1.11.x | 9.0 | | 1.10.x | 9.0 | | 1.9.x | 9.0 | | 1.8.x | 9.0 | 需要注意的是,除了CUDA版本外,还需要安装与所选TensorFlow版本相对应的cuDNN版本。在选择TensorFlow版本之前,请先确认您的CUDA版本和系统支持的CUDA版本是否匹配。 ### 回答2: CUDATensorFlow是两个不同的软件,但它们有一些关联和依赖。CUDA是由NVIDIA开发的一种并行计算平台和编程模型,可用于利用GPU进行高性能计算。而TensorFlow则是一个由Google开发的开源机器学习框架,可以用于深度学习和其他机器学习应用。 为了让TensorFlow能够最大化地使用GPU计算能力,需要安装与CUDA相应版本兼容的TensorFlow。这是因为TensorFlow使用CUDA作为GPU的计算平台,并且需要与CUDA相应版本匹配CUDA Toolkit和cuDNN库。如果TensorFlowCUDA版本不兼容,将导致无法运行代码或者GPU性能不佳。 查看TensorFlowCUDA版本兼容性,可以在TensorFlow官网上找到相关信息。例如,TensorFlow 2.6版本可以与CUDA 11.2和cuDNN 8.1.0配合使用。这意味着,为了在机器上成功运行TensorFlow 2.6,需要先安装CUDA 11.2和cuDNN 8.1.0。其他TensorFlow版本可能需要与其他版本CUDA和cuDNN兼容,可参考TensorFlow官网或者TensorFlow安装文档中的版本兼容性列表。 总之,为了确保良好的TensorFlow性能和可靠性,需要安装与TensorFlow版本相应的CUDA和cuDNN。在安装前,应该先了解TensorFlowCUDA版本的兼容性,以便正确选择CUDA和cuDNN的版本。 ### 回答3: CUDATensorFlow版本是密切相关的。CUDA是一种由NVIDIA开发的基于GPU的并行计算平台和编程模型,而TensorFlow则是由谷歌开发的机器学习框架,能够实现深度学习任务。 当使用TensorFlow进行深度学习训练时,需要考虑安装与操作系统和GPU兼容的版本CUDA和cuDNN软件包。这是因为TensorFlow使用GPU加速来更快地进行数学运算,而CUDA和cuDNN是实现GPU加速的必备软件包。 TensorFlow版本CUDA版本的对应关系如下: TensorFlow 1.x版本: - TensorFlow 1.15支持CUDA 10.0/cuDNN 7.4.1 - TensorFlow 1.14支持CUDA 10.0/cuDNN 7.4 - TensorFlow 1.13支持CUDA 10.0/cuDNN 7.3 - TensorFlow 1.12支持CUDA 9.0/cuDNN 7.1.4 - TensorFlow 1.11支持CUDA 9.0/cuDNN 7.1.4 - TensorFlow 1.10支持CUDA 9.0 - TensorFlow 1.9支持CUDA 9.0 - TensorFlow 1.8支持CUDA 9.0 - TensorFlow 1.7支持CUDA 9.0 - TensorFlow 1.6支持CUDA 9.0 TensorFlow2.x版本: - TensorFlow 2.2支持CUDA 10.1/cuDNN 7.6 - TensorFlow 2.1支持CUDA 10.1/cuDNN 7.6 - TensorFlow 2.0支持CUDA 10.0 需要注意的是,不同版本CUDATensorFlow可能会导致不同的兼容性问题,因此确保选择兼容版本非常重要。同时,也需要确保安装的CUDA和cuDNN版本与安装的显卡类型和操作系统版本匹配。如果不确定如何安装或选择正确的版本,请查看相关文档或咨询相关的技术支持人员。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值