1 介绍
本教程将指导您如何在Anaconda环境中安装TensorFlow(CUDA版本),并配置所需的三方组件,包括CUDA Toolkit、cuDNN、protobuf等。(参考b站视频:BV1rd4y187nM)
2 先决条件
- 已安装Anaconda
- 了解基础的命令行操作
3 安装前准备
3.1 查看显卡相关信息
安装之前首先查看自己电脑NVIDIA显卡的相关信息
- 按下
Win + R
键打开运行对话框,输入cmd
按回车打开命令提示符 - 输入以下命令查看自己的NVIDIA显卡的相关信息
如下图所示,了解自己的显卡型号以及CUDA版本信息:
如图所示设备显卡为4060 Ti,CUDA版本为12.5。
3.2 了解工具包版本兼容性
- 官方建议配置:
打开TensorFlow官网查询官方建议配置信息,给出的为tensorflow-gpu相对应的Python版本范围,官方建议的cuDNN版本和CUDA的版本要求。
如图所示,本设备选择相关配置如图红框标注所示: - Python选择3.8版本;cuDNN:8.1;CUDA:11.2
4 具体步骤
4.1 创建Anaconda虚拟环境
打开Anaconda Prompt输入以下指令创建一个新的虚拟环境tf_gpu
,python版本选择3.8版本。
conda create -n tf_gpu python=3.8 -y
conda activate tf_gpu
注意:由于tensorflow对各种工具包之间的版本兼容性要求非常严苛,因此以下CUDA Toolkit、cuDNN、以及TensorFlow都需要严格按照官方推荐版本搭配安装
根据4.3.2所述:Python版本3.8;cuDNN版本8.1;CUDA版本11.2
4.2 安装CUDA Toolkit
CUDA Toolkit是NVIDIA提供的用于GPU计算的工具包,可以在深度学习是进行加速运算。TensorFlow需要特定版本的CUDA。
-
首先进入CUDA下载界面,选择CUDA Toolkit 11.2.0
-
操作环境选择
Windows
,版本选择10
,安装器类型选择exe(local)
,然后点击下载