【深度学习】TensorFlow(cuda版)安装以及对应第三方库安装流程

1 介绍

本教程将指导您如何在Anaconda环境中安装TensorFlow(CUDA版本),并配置所需的三方组件,包括CUDA Toolkit、cuDNN、protobuf等。(参考b站视频:BV1rd4y187nM)

2 先决条件

  • 已安装Anaconda
  • 了解基础的命令行操作

3 安装前准备

3.1 查看显卡相关信息

安装之前首先查看自己电脑NVIDIA显卡的相关信息

  1. 按下Win + R键打开运行对话框,输入cmd按回车打开命令提示符
  2. 输入以下命令查看自己的NVIDIA显卡的相关信息

如下图所示,了解自己的显卡型号以及CUDA版本信息
在这里插入图片描述

如图所示设备显卡为4060 Ti,CUDA版本为12.5。

3.2 了解工具包版本兼容性

  • 官方建议配置:
    打开TensorFlow官网查询官方建议配置信息,给出的为tensorflow-gpu相对应的Python版本范围,官方建议的cuDNN版本和CUDA的版本要求。
    如图所示,本设备选择相关配置如图红框标注所示:
  • Python选择3.8版本;cuDNN:8.1;CUDA:11.2
    在这里插入图片描述

4 具体步骤

4.1 创建Anaconda虚拟环境

打开Anaconda Prompt输入以下指令创建一个新的虚拟环境tf_gpu,python版本选择3.8版本。

conda create -n tf_gpu python=3.8 -y
conda activate tf_gpu

注意:由于tensorflow对各种工具包之间的版本兼容性要求非常严苛,因此以下CUDA Toolkit、cuDNN、以及TensorFlow都需要严格按照官方推荐版本搭配安装
根据4.3.2所述:Python版本3.8;cuDNN版本8.1;CUDA版本11.2

4.2 安装CUDA Toolkit

CUDA Toolkit是NVIDIA提供的用于GPU计算的工具包,可以在深度学习是进行加速运算。TensorFlow需要特定版本的CUDA。

  1. 首先进入CUDA下载界面,选择CUDA Toolkit 11.2.0Pasted image 20240928210126

  2. 操作环境选择Windows,版本选择10,安装器类型选择exe(local),然后点击下载

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值