利用sklearn进行数据归一化

利用sklearn进行数据归一化

1.

from sklearn.preprocessing import MinMaxScaler
data = [[-1,2],[-0.5,6],[0,10],[1,18]]      #生成的是4*2的矩阵
import pandas as pd
data = pd.DataFrame(data)
print(data)
print(data.shape)
     0   1
0 -1.0   2
1 -0.5   6
2  0.0  10
3  1.0  18

(4, 2)

注意data的形式,是生成一个4*2的矩阵

2.

#实现归一化
scalar = MinMaxScaler()  #实例化
scalar = scalar.fit(data)
result = scalar.transform(data)
print(result)

或者:

#实现归一化
scalar = MinMaxScaler()  #实例化
result_ = scalar.fit_transform(data)
print(result_)
[[0.   0.  ]
 [0.25 0.25]
 [0.5  0.5 ]
 [1.   1.  ]]

3.
从归一化矩阵恢复到原来矩阵

inverse_result = scalar.inverse_transform(result_)
print(inverse_result)
[[-1.   2. ]
 [-0.5  6. ]
 [ 0.  10. ]
 [ 1.  18. ]]

4.
利用feature_range属性

#实现归一化
scalar = MinMaxScaler(feature_range=[5,10])  #实例化
result_ = scalar.fit_transform(data)
print(result_)
[[ 5.    5.  ]
 [ 6.25  6.25]
 [ 7.5   7.5 ]
 [10.   10.  ]]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值