sklearn方法的归一化处理

泰坦尼克号数据中:

 后面7列的数据特征特区以及进行归一化处理。

 Feature的提取:

ndarray_data=selected_df_data.values #转换为数组方法
Features = ndarray_data[:,1:] #提取特征,除名字外
print(Features)

 Feature的归一化处理:

from sklearn import preprocessing
minmax_scale =preprocessing.MinMaxScaler(feature_range =(0,1))
norm_features=minmax_scale.fit_transform(Features)

 结果实现对特征的归一化:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值