【pytorch】学习系列文章

本文探讨了PyTorch中add和concat操作的区别,以及为何许多图像识别选择灰度化。add用于张量相加保持维度不变,concat则进行维度拼接。同时,解释了灰度图像在特征提取中的优势,如减少光照影响和计算复杂度。
摘要由CSDN通过智能技术生成

系列文章目录

提示:记录pytorch学习过程中的困惑
第一章 Pytorch add 和 concat的区别


前言

此文章不是官方文档,主要记录学习过程中的困惑


提示:以下是本篇文章正文内容,下面案例可供参考

一、Pytorch的add 和 concat?

在resnet和ShuffleNet的shortcut,有的是用add,有的用concat! 在shuffleNet中stride = 1的用add,stride=2的用concat!

1、Concat:张量拼接,会扩充两个张量的维度,
在这里插入图片描述

例如2626256和2626512两个张量拼接,结果是2626768。
2、add:张量相加,张量直接相加,不会扩充维度。
在这里插入图片描述
例如104104128和104104128相加,结果还是104104128。add和cfg文件中的shortcut功能一样。

二、很多图片识别为什么将彩色图像灰度化?

可能的答案1:
我们识别物体,最关键的因素是梯度(现在很多的特征提取,SIFT,HOG等等本质都是梯度的统计信息),梯度意味着边缘,这是最本质的部分,而计算梯度,自然就用到灰度图像了。颜色本身,非常容易受到光照等因素的影响,同类的物体颜色有很多变化。所以颜色本身难以提供关键信息。2010PAMI有colorSIFT的一些工作,本质也是不同通道的梯度。

可能的答案2:
彩色图片信息量大,有的时候我们仅仅用灰度图像里的信息就已经够了,为了提高运算速度自然就会采用灰度图,甚至有时灰度图还是过大,采用二值化图像也是有可能的.
包含色彩的话,特征量,计算量成指数倍数增加。比如一个点,灰度的话,就256个维度而已,但是如果算上RGB色彩的话,那就是1600万以上维度。然后再相互组合,或者说找梯度,可以想象看看~~计算量太大,但是好在就算是全色盲也可以分辨物体,于是就x先降维(灰度)来计算。如果是分辨红绿灯的话,你看看有哪个敢直接只用灰度的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值