IoU 作为目标检测算法性能 mAP 计算的一个非常重要的函数。
但纵观 IoU 计算的介绍知识,都是直接给出代码,给出计算方法,没有人彻底地分析过其中的逻辑,故本人书写该篇博客来介绍下其中的逻辑。
1. IoU的简介及原理解析
IoU 的全称为交并比(Intersection over Union),通过这个名称我们大概可以猜到 IoU 的计算方法。IoU 计算的是 “预测的边框” 和 “真实的边框” 的交集和并集的比值。
开始计算之前,我们首先进行分析下交集和并集到底应该怎么计算:我们首先需要计算交集,然后并集通过两个边框的面积的和减去交集部分即为并集,因此 IoU 的计算的难点在于交集的计算。
为了计算交集,你脑子里首先想到的方法应该是:考虑两个边框的相对位置,然后按照相对位置(左上,左下,右上,右下,包含,互不相交)分情况讨论,来计算交集。
上图就是你的直觉,这样想没有错。但计算一个交集,就要分多种情况讨论,要是程序真的按照这逻辑编写就太搞笑了。因此对这个问题进行进一步地研究显得十分有必要。
让我们重新思考一下两个框交集的计算。两个框交集的计算的实质是两个集合交集的计算,因此我们可以将两个框的交集的计算简化为:
通过简化,我们可以清晰地看到,交集计算的关键是交集上下界点(图中蓝点)的计算。
我们假设集合 A 为 [ x 1 x 1 x 1 x1x1 x_{1} x1x1x1z2−z1 小于0,则说明集合 A 和集合 B 没有交集。
下面使用Python来实现两个一维集合的 IoU 的计算:
def iou(set_a, set_b):
'''
一维 iou 的计算
'''
x1, x2 = set_a # (left, right)
y1, y2 = set_b # (left, right)