两篇前的题目答案是:θ(lgn)
之前求解分治策略的运算时间都是构造 “递归树” 然后分层求和,今天讲一讲用 “主定理” 求解运算时间。
下面是主定理的定义:
怎么理解上面三条规则呢?(以下三条仅供理解,原因接着往下看)
1、如果 nlogb(a) > f(n) ,则T(n)=θ(nlogb(a))
2、如果 nlogb(a) = f(n),则T(n)=θ(nlogb(a)lgn)
3、如果 nlogb(a) < f(n) ,则T(n)=θ(f(n))
条件1的实际意义是: f(n)的多项式要小于nlogb(a),也就是说f(n)渐进小于nlogb(a),要相差一个ne,同理
条件2的实际意义是: f(n)的多项式要大于nlogb(a),而且要满足条件af(n/b)≤cf(n)
这就导致了条件1、2和条件2、3之间有间隙,
比如条件1、2之间:nlogb(a) > f(n) 但是 f(n)的多项式不是多项式意义上的小于,同理条件2、3之间也有类似情况,这两种情况就不能使用主定理进行求解,文章末尾会有一种可以通用的方法简介。
再举个例子,这是我们归并排序时候的递归式 T(n) = 2T(n/2) + θ(n),通过主定理 可知 nlogb(a) = n, 因为f(n) = θ(n),满足条件2,因此T(n)=θ(nlgn)
当出现主定理的间隙条件时:
1、使用递归树去推导运行时间
2、使用下图的方法去解决
PS.主定理的推理较复杂,如果有需要可以自行查资料