考研数学二笔记

文章目录

第一讲、极限

核心考点

1)定义

2)性质

3)计算

4)应用

1.极限的定义与性质

  1. 函数极限

lim ⁡ x → x 0 f ( x ) = A ⇔ ∀ ε > 0 , ∃ δ > 0 , 当 0 < ∣ x − x 0 ∣ < δ 时 , 有 ∣ f ( x ) − A ∣ < ε \lim_{x\rightarrow x_0}{f(x)}=A\Leftrightarrow \forall \varepsilon>0,\exists\delta>0,当0<|x-x_0|<\delta时,有|f(x)-A|<\varepsilon xx0limf(x)=Aε>0,δ>0,0<xx0<δf(x)A<ε

  1. 数列极限

lim ⁡ n → ∞ x n = A ⇔ ∀ ϵ > 0 , 当 n > N 时 , 有 ∣ x n − A ∣ < ε \lim_{n\rightarrow\infty}{x_n}=A\Leftrightarrow\forall\epsilon>0,当n>N时,有|x_n-A|<\varepsilon nlimxn=Aϵ>0,n>NxnA<ε

  1. 唯一性

若 lim ⁡ x → x 0 f ( x ) = A 存 在 ( ∃ ) , 则 A 必 唯 一 。 若\lim_{x\rightarrow x_0}{f(x)}=A存在(\exists),则A必唯一。 xx0limf(x)=AA

常考函数: f ( x ) = arctan ⁡ x f(x)=\arctan x f(x)=arctanx f ( x ) = ∣ x ∣ f(x)=|x| f(x)=x f ( x ) = e x f(x)=e^{x} f(x)=ex

  1. 局部有界性

若 lim ⁡ x → x 0 f ( x ) = A ( ∃ ) , 则 ∃ δ > 0 , 当 0 < ∣ x − x 0 ∣ < δ 时 , ∃ M > 0 , 使 ∣ f ( x ) ∣ < M 若\lim_{x\rightarrow x_0}{f(x)}=A(\exists),则\exists\delta>0,当0<|x-x_0|<\delta时,\exists M>0,使|f(x)|<M xx0limf(x)=A()δ>00<xx0<δM>0使f(x)<M

  1. 局部保号性

若 lim ⁡ x → x 0 f ( x ) = A > ( < 0 ) , 则 ∃ δ > 0 , 当 0 < ∣ x − x 0 ∣ < δ 时 , f ( x ) > 0 ( < 0 ) 若\lim_{x\rightarrow x_0}{f(x)}=A>(<0),则\exists\delta>0,当0<|x-x_0|<\delta时,f(x)>0(<0) xx0limf(x)=A>(<0)δ>00<xx0<δf(x)>0(<0)

2.函数极限的计算

极限计算方式:化简、判断类型(7种未定式),使用洛必达和泰勒。

七种未定式: 0 0 , ∞ ∞ , 0 ⋅ ∞ , 1 ∞ , ∞ 0 , 0 0 \frac{0}{0},\frac{\infty}{\infty},0\cdot\infty,1^\infty,\infty^0,0^0 00,,0,1,0,00

等价替换:当 φ ( x ) → 0 \varphi\left(x\right)\rightarrow0 φ(x)0时,
φ ( x ) ∼ sin ⁡ φ ( x ) ∼ ln ⁡ ( 1 + φ ( x ) ) ∼ e φ ( x ) − 1 ∼ arctan ⁡ φ ( x ) ∼ tan ⁡ φ ( x ) ( 1 + x ) α − 1 ∼ α x x − ln ⁡ ( φ ( x ) + 1 ) ∼ 1 − cos ⁡ φ ( x ) ∼ 1 2 x 2 x − sin ⁡ x ∼ arcsin ⁡ x − x ∼ 1 6 x 3 tan ⁡ x − sin ⁡ x ∼ 1 2 x 3 sin ⁡ x + x ∼ 2 x \varphi\left(x\right)\sim\sin\varphi\left(x\right)\sim\ln\left(1+\varphi\left(x\right)\right)\sim e^{\varphi\left(x\right)}-1\sim\arctan\varphi\left(x\right)\sim\tan\varphi\left(x\right)\\ \left(1+x\right)^\alpha-1\sim\alpha x\\ x-\ln\left(\varphi\left(x\right)+1\right)\sim1-\cos\varphi\left(x\right)\sim\frac{1}{2}x^2\\ x-\sin x\sim\arcsin x-x\sim\frac{1}{6}x^3\\ \tan x-\sin x\sim\frac{1}{2}x^3\\ \sin x+x\sim2x φ(x)sinφ(x)ln(1+φ(x))eφ(x)1arctanφ(x)tanφ(x)(1+x)α1αxxln(φ(x)+1)1cosφ(x)21x2xsinxarcsinxx61x3tanxsinx21x3sinx+x2x
泰勒公式:
e x = ∑ n = 0 ∞ x n n ! , − ∞ < x < + ∞ 1 1 + x = ∑ n = 0 ∞ ( − 1 ) n x n , − 1 < x < 1 1 1 − x = ∑ n = 0 ∞ x n , − 1 < x < 1 ln ⁡ ( 1 + x ) = ∑ n = 1 ∞ ( − 1 ) n − 1 x n n , − 1 < x ≤ 1 sin ⁡ x = ∑ n = 0 ∞ ( − 1 ) n x 2 n + 1 ( 2 n + 1 ) ! cos ⁡ x = ∑ n = 0 ∞ ( − 1 ) n x 2 n ( 2 n ) ! ( 1 + x ) α = 1 + α x + α ( α − 1 ) 2 ! x 2 + ⋯ + α ( α − 1 ) ⋯ ( α − n + 1 ) n ! x n e^x=\sum_{n=0}^{\infty}\frac{x^n}{n!},-\infty<x<+\infty\\ \frac{1}{1+x}=\sum_{n=0}^{\infty}(-1)^nx^n,-1<x<1\\ \frac{1}{1-x}=\sum_{n=0}^{\infty}x^n,-1<x<1\\ \ln(1+x)=\sum_{n=1}^{\infty}(-1)^{n-1}\frac{x^n}{n},-1<x\leq1\\ \sin x=\sum_{n=0}^{\infty}(-1)^n\frac{x^{2n+1}}{(2n+1)!} \cos x=\sum_{n=0}^{\infty}(-1)^n\frac{x^{2n}}{(2n)!}\\ (1+x)^\alpha=1+\alpha x+\frac{\alpha(\alpha-1)}{2!}x^2+\cdots+\frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}x^n ex=n=0n!xn,<x<+1+x1=n=0(1)nxn,1<x<11x1=n=0xn,1<x<1ln(1+x)=n=1(1)n1nxn,1<x1sinx=n=0(1)n(2n+1)!x2n+1cosx=n=0(1)n(2n)!x2n(1+x)α=1+αx+2!α(α1)x2++n!α(α1)(αn+1)xn

3.数列极限的计算(重点)

  • 单调有界准则
  • 夹逼准则

4.极限的应用

(1)研究两类特殊的点

  • 无定义点(必间断)
  • 分段函数的分段点(未必间断)

(2)连续

若 lim ⁡ x → x 0 f ( x ) = f ( x 0 ) , 则 称 f ( x ) 在 x = x 0 处 连 续 若\lim_{x\rightarrow x_0}{f(x)=f(x_0)},则称f(x)在x=x_0处连续 xx0limf(x)=f(x0)f(x)x=x0

(3)间断

f ( x ) f(x) f(x) x = x 0 x=x_0 x=x0的某去心邻域有定义, lim ⁡ x → x 0 + f ( x ) = lim ⁡ x → x 0 − f ( x ) = f ( x 0 ) \displaystyle\lim_{x\rightarrow {x_0}^+}{f(x)}=\lim_{x\rightarrow {x_0}^-}{f(x)}=f(x_0) xx0+limf(x)=xx0limf(x)=f(x0)

1)若 lim ⁡ x → x 0 + f ( x ) \displaystyle\lim_{x\rightarrow {x_0}^+}{f(x)} xx0+limf(x), lim ⁡ x → x 0 − f ( x ) \displaystyle\lim_{x\rightarrow {x_0}^-}{f(x)} xx0limf(x)均存在,

lim ⁡ x → x 0 + f ( x ) ≠ lim ⁡ x → x 0 − f ( x ) \displaystyle\lim_{x\rightarrow {x_0}^+}{f(x)}\neq\displaystyle\lim_{x\rightarrow {x_0}^-}{f(x)} xx0+limf(x)=xx0limf(x),则称 x = x 0 x=x_0 x=x0 f ( x ) f(x) f(x)跳跃间断点

lim ⁡ x → x 0 + f ( x ) = lim ⁡ x → x 0 − f ( x ) ≠ f ( x 0 ) \displaystyle\lim_{x\rightarrow {x_0}^+}{f(x)}=\displaystyle\lim_{x\rightarrow {x_0}^-}{f(x)}\neq f(x_0) xx0+limf(x)=xx0limf(x)=f(x0),则称 x = x 0 x=x_0 x=x0是为 f ( x ) f(x) f(x)可去间断点

2)若 lim ⁡ x → x 0 + f ( x ) \displaystyle\lim_{x\rightarrow {x_0}^+}{f(x)} xx0+limf(x), lim ⁡ x → x 0 − f ( x ) \displaystyle\lim_{x\rightarrow {x_0}^-}{f(x)} xx0limf(x)均不存在

lim ⁡ x → x 0 f ( x ) = ∞ \displaystyle\lim_{x\rightarrow x_0}{f(x)}=\infty xx0limf(x)=,则称 x 0 x_0 x0无穷间断点

lim ⁡ x → x 0 f ( x ) \displaystyle\lim_{x\rightarrow x_0}{f(x)} xx0limf(x)为震荡不存在,则 x 0 x_0 x0震荡间断点

5.例题

**【例题1】**设正项数列 { x n } \{x_n\} { xn}满足 lim ⁡ n → ∞ x n + 1 x n = 1 2 \displaystyle\lim_{n\rightarrow\infty}{\frac{x_{n+1}}{x_n}}=\frac{1}{2} nlimxnxn+1=21,则

A、 lim ⁡ n → ∞ x n = 0 \displaystyle\lim_{n\rightarrow\infty}{x_n}=0 nlimxn=0

B、 lim ⁡ n → ∞ x n \displaystyle\lim_{n\rightarrow\infty}{x_n} nlimxn存在,但不为零

C、 lim ⁡ n → ∞ x n \displaystyle\lim_{n\rightarrow\infty}{x_n} nlimxn不存在

D、 lim ⁡ n → ∞ x n \displaystyle\lim_{n\rightarrow\infty}{x_n} nlimxn可能存在,也可能不存在

【分析】正项数列 ⇒ x n > 0 \Rightarrow x_n>0 xn>0,有下界 0 0 0 lim ⁡ n → ∞ x n + 1 x n − 1 < 0 \displaystyle\lim_{n\rightarrow\infty}{\frac{x_{n+1}}{x_n}}-1<0 nlimxnxn+11<0,则根据极限保号性,当 n → ∞ n\rightarrow\infty n时, x n + 1 x n < 1 ⇒ x n + 1 < x n \frac{x_{n+1}}{x_n}<1\Rightarrow x_{n+1}<x_n xnxn+1<1xn+1<xn,单调减少,根据单调有界准则,所以数列必有极限。A、B排除。记 lim ⁡ n → ∞ x n = A \displaystyle\lim_{n\rightarrow\infty}{x_n}=A nlimxn=A.

假设 A ≠ 0 A\neq0 A=0,则 lim ⁡ n → ∞ x n + 1 x n = lim ⁡ n → ∞ x n + 1 lim ⁡ n → ∞ x n = A A = 1 ≠ 1 2 \displaystyle\lim_{n\rightarrow\infty}{\frac{x_{n+1}}{x_n}}=\displaystyle\frac{\displaystyle\lim_{n\rightarrow\infty}{x_{n+1}}}{\displaystyle\lim_{n\rightarrow\infty}{x_{n}}}=\frac{A}{A}=1\neq\frac{1}{2} nlimxnxn+1=nlimxnnlimxn+1=AA=1=21,矛盾,所以 A = 0 A=0 A=0,故选A

【注】若 lim ⁡ n → ∞ x n + 1 x n = 2 \displaystyle\lim_{n\rightarrow\infty}{\frac{x_{n+1}}{x_n}}=2 nlimxnxn+1=2或若 lim ⁡ n → ∞ x n + 1 x n = 1 \displaystyle\lim_{n\rightarrow\infty}{\frac{x_{n+1}}{x_n}}=1 nlimxnxn+1=1时候,又该如何处理?

【例题2】 f ( x ) = e 1 x sin ⁡ π x ( x 2 − 1 ) ∣ x ∣ \displaystyle f(x)=e^{\frac{1}{x}}\frac{\sin\pi x}{(x^2-1)|x|} f(x)=ex1(x21)xsinπx无界的一个区间是()

A、 ( − ∞ , − 1 ) (-\infty,-1) (,1) B、 ( − 1 , 0 ) (-1,0) (1,0) C、 ( 0 , 1 ) (0,1) (0,1) D、 ( 1 , + ∞ ) (1,+\infty) (1,+)

【分析】谈论 f ( x ) f(x) f(x)在区间 I I I上的有界性:

(1)理论:闭区间上连续函数必有界。

(2)计算: f ( x ) f(x) f(x) ( a , b ) (a,b) (a,b)上连续,且 lim ⁡ x → a + f ( x ) ∃ , lim ⁡ x → b − f ( x ) ∃ \displaystyle\lim_{x\rightarrow a^{+}}{f(x)}\exists,\displaystyle\lim_{x\rightarrow b^{-}}{f(x)}\exists xa+limf(x),xblimf(x),则函数在开区间 ( a , b ) (a,b) (a,b)上有界。

(3)四则运算:若 lim ⁡ f ( x ) \lim f(x) limf(x) ∃ ⇒ \exists\Rightarrow

有界 ± \pm ±有界 = = =有界 有界 × \times ×有界 = = =有界

【解答】算极限

lim ⁡ x → − ∞ e 1 x sin ⁡ π x ( x 2 − 1 ) ∣ x ∣ = 0 \displaystyle\lim_{x\rightarrow -\infty}{e^{\frac{1}{x}}\frac{\sin\pi x}{(x^2-1)|x|}}=0 xlimex1(x21)xsinπx=0,有界

lim ⁡ x → − 1 e 1 x sin ⁡ π x ( x 2 − 1 ) ∣ x ∣ = e − 1 lim ⁡ x → − 1 sin ⁡ π x x 2 − 1 = π 2 e \displaystyle\lim_{x\rightarrow-1}{e^{\frac{1}{x}}\frac{\sin\pi x}{(x^2-1)|x|}}=e^{-1}\lim_{x\rightarrow-1}{\frac{\sin\pi x}{x^2-1}}=\frac{\pi}{2e} x1limex1(x21)xsinπx=e1x1limx21sinπx=2eπ,有界

A排除

lim ⁡ x → 0 − e 1 x sin ⁡ π x ( x 2 − 1 ) ∣ x ∣ = 0 \displaystyle\lim_{x\rightarrow0^-}{e^{\frac{1}{x}}\frac{\sin\pi x}{(x^2-1)|x|}}=0 x0limex1(x21)xsinπx=0,有界

B排除

lim ⁡ x → 0 + e 1 x sin ⁡ π x ( x 2 − 1 ) ∣ x ∣ = − ∞ ⇒ \displaystyle\lim_{x\rightarrow0^+}{e^{\frac{1}{x}}\frac{\sin\pi x}{(x^2-1)|x|}}=-\infty\Rightarrow x0+limex1(x21)xsinπx=无界,答案选C

lim ⁡ x → 1 − e 1 x sin ⁡ π x ( x 2 − 1 ) ∣ x ∣ = π e 2 \displaystyle\lim_{x\rightarrow1^-}{e^{\frac{1}{x}}\frac{\sin\pi x}{(x^2-1)|x|}}=\frac{\pi e}{2} x1limex1(x21)xsinπx=2πe

lim ⁡ x → 1 + e 1 x sin ⁡ π x ( x 2 − 1 ) ∣ x ∣ = − e π 2 \displaystyle\lim_{x\rightarrow1^+}{e^{\frac{1}{x}}\frac{\sin\pi x}{(x^2-1)|x|}}=-\frac{e\pi}{2} x1+limex1(x21)xsinπx=2eπ

lim ⁡ x → + ∞ e 1 x sin ⁡ π x ( x 2 − 1 ) ∣ x ∣ = 0 \displaystyle\lim_{x\rightarrow+\infty}{e^{\frac{1}{x}}\frac{\sin\pi x}{(x^2-1)|x|}}=0 x+limex1(x21)xsinπx=0,有界

**【例题3】**若 lim ⁡ x → 0 f ( x ) − f ( 0 ) x 2 = ln ⁡ 2 \displaystyle\lim_{x\rightarrow 0}{\frac{f(x)-f(0)}{x^2}}=\ln 2 x0limx2f(x)f(0)=ln2,则 f ( x ) f(x) f(x) x = 0 x=0 x=0

【分析】考查保号性, l n 2 > 0 ln2>0 ln2>0,在 x → 0 x\rightarrow0 x0时, f ( x ) − f ( 0 ) x 2 > 0 ⇒ f ( x ) > f ( 0 ) \displaystyle\frac{f(x)-f(0)}{x^2}>0\Rightarrow f(x)>f(0) x2f(x)f(0)>0f(x)>f(0),所以 f ( x ) f(x) f(x) x = 0 x=0 x=0处取得极小值。

**【例题4】**求极限 lim ⁡ x → 1 x − x x 1 − x + ln ⁡ x \displaystyle\lim_{x\rightarrow1}{\frac{x-x^x}{1-x+\ln x}} x1lim1x+lnxxxx

【解】原式 = lim ⁡ x → 1 x ( 1 − x x − 1 ) 1 − x + ln ⁡ x = lim ⁡ x → 1 x ( 1 − e ( x − 1 ) ln ⁡ x ) 1 − x + ln ⁡ x = lim ⁡ x → 1 x ( 1 − x ) ln ⁡ x 1 − x + ln ⁡ x = lim ⁡ x → 1 − ( x − 1 ) 2 1 − x + ln ⁡ x = lim ⁡ x → 1 − 2 ( x − 1 ) − 1 + 1 x = 2 =\displaystyle\lim_{x\rightarrow1}{\frac{x(1-x^{x-1})}{1-x+\ln x}}=\lim_{x\rightarrow1}{\frac{x(1-e^{(x-1)\ln x})}{1-x+\ln x}}=\lim_{x\rightarrow1}{\frac{x(1-x)\ln x}{1-x+\ln x}}=\lim_{x\rightarrow1}{\frac{-(x-1)^2}{1-x+\ln x}}=\lim_{x\rightarrow1}{\frac{-2(x-1)}{-1+\frac{1}{x}}}=2 =x1lim1x+lnxx(1xx1)=x1lim1x+lnxx(1e(x1)lnx)=x1lim1x+lnxx(1x)lnx=x1lim1x+lnx(x1)2=x1lim1+x12(x1)=2

【注】:设 a , b , c , d a,b,c,d a,b,c,d均不为0,则
lim ⁡ x → 0 a ( x 2 − sin ⁡ 2 x ) + b arcsin ⁡ x c ( e x − 1 ) + d ln ⁡ ( 1 + x 3 ) = b c \lim_{x\rightarrow0}{\frac{a(x^2-\sin^2x)+b\arcsin x}{c(e^x-1)+d\ln(1+x^3)}}=\frac{b}{c} x0limc(ex1)+dln(1+x3)a(x2sin2x)+barcsinx=cb
**【例题5】**求极限 lim ⁡ x → 0 e − 1 x 2 x 100 \displaystyle\lim_{x\rightarrow0}{\frac{e^{-\frac{1}{x^2}}}{x^{100}}} x0limx100ex21

【分析】利用换元法,令 t = 1 x 2 t=\frac{1}{x^2} t=x21,原式 = lim ⁡ t → + ∞ t 50 e t = 0 =\displaystyle\lim_{t\rightarrow+\infty}{\frac{t^{50}}{e^t}}=0 =t+limett50=0

**【例题6】**设 ∀ α > 0 \forall\alpha>0 α>0,证明 lim ⁡ x → 0 + x α ln ⁡ x = 0 \displaystyle\lim_{x\rightarrow 0^+}{x^{\alpha}\ln x}=0 x0+limxαlnx=0

【解】原式 = lim ⁡ x → 0 + ln ⁡ x x − α = lim ⁡ x → 0 + 1 x − α x − α − 1 = 0 =\displaystyle\lim_{x\rightarrow0^+}{\frac{\ln x}{x^{-\alpha}}}=\lim_{x\rightarrow0^+}{\frac{\frac{1}{x}}{-\alpha x^{-\alpha-1}}}=0 =x0+limxαlnx=x0+limαxα1x1=0

【注】
x → + ∞ , e α x ≫ x β x ≫ ln ⁡ γ x x → 0 + , 1 x α ≫ ∣ ln ⁡ x ∣ x\rightarrow+\infty,e^{\alpha x}\gg x^{\beta x}\gg \ln^\gamma x\\ x\rightarrow0^+,\frac{1}{x^{\alpha}}\gg |\ln x| x+,eαxxβxlnγxx0+,xα1lnx
**【例题7】**求极限 lim ⁡ x → 0 ( 1 x 2 − x sin ⁡ 3 x ) \displaystyle\lim_{x\rightarrow0}{\left(\frac{1}{x^2}-\frac{x}{\sin^3x}\right)} x0lim(x21sin3xx)

【解】原式 = lim ⁡ x → 0 sin ⁡ 3 x − x 3 x 5 = lim ⁡ x → 0 ( sin ⁡ x − x ) ( sin ⁡ 2 x + x 2 + x sin ⁡ x ) x 5 = − 1 2 =\displaystyle\lim_{x\rightarrow0}{\frac{\sin^3x-x^3}{x^5}}=\lim_{x\rightarrow0}{\frac{(\sin x-x)(\sin^2x+x^2+x\sin x)}{x^5}}=-\frac{1}{2} =x0limx5sin3xx3=x0limx5(sinxx)(sin2x+x2+xsinx)=21

**【例题8】**求极限 lim ⁡ x → + ∞ [ 4 x 2 + x ln ⁡ ( 2 + 1 x ) − 2 x ln ⁡ 2 ] \displaystyle\lim_{x\rightarrow+\infty}{\left[\sqrt{4x^2+x}\ln\left(2+\frac{1}{x}\right)-2x\ln 2\right]} x+lim[4x2+x ln(2+x1)2xln2]

【解】令 x = 1 t x=\frac{1}{t} x=t1,则
原 式 = lim ⁡ t → 0 + [ 4 t 2 + 1 t ln ⁡ ( 2 + t ) − 2 ln ⁡ 2 t ] = lim ⁡ t → 0 + 4 + t ln ⁡ ( 2 + t ) − 2 ln ⁡ 2 t = lim ⁡ t → 0 + ln ⁡ ( 2 + t ) 2 4 + t + 4 + t 2 + t = ln ⁡ 2 4 + 1 原式=\lim_{t\rightarrow0^+}{\left[\sqrt{\frac{4}{t^2}+\frac{1}{t}}\ln(2+t)-\frac{2\ln 2}{t}\right]}=\lim_{t\rightarrow0^+}{\frac{\sqrt{4+t}\ln(2+t)-2\ln 2}{t}}\\ =\lim_{t\rightarrow0^+}{\frac{\ln(2+t)}{2\sqrt{4+t}}+\frac{\sqrt{4+t}}{2+t}}=\frac{\ln 2}{4}+1 =t0+lim[t24+t1 ln(2+t)t2ln2]=t0+limt4+t ln(2+t)2ln2=t0+lim24+t ln(2+t)+2+t4+t =4ln2+1
**【例题9】**求极限 lim ⁡ x → 0 + ( 2 x − tan ⁡ x 2 ) sin ⁡ x \displaystyle\lim_{x\rightarrow0^+}{\left(2x-\tan x^2\right)^{\sin x}} x0+lim(2xtanx2)sinx

原式 = lim ⁡ x → 0 + e sin ⁡ x ( ln ⁡ ( 2 x − − tan ⁡ x 2 ) ) = e lim ⁡ x → 0 + ln ⁡ ( 2 x − tan ⁡ x 2 ) 1 x = e lim ⁡ x → 0 + 2 − 2 x sec ⁡ 2 x 2 2 x − tan ⁡ x 2 − 1 x 2 = e 2 lim ⁡ x → 0 + x 2 tan ⁡ x 2 − 2 x = 1 =\displaystyle\lim_{x\rightarrow0^+}{e^{\sin x(\ln(2x--\tan x^2))}}=e^{\displaystyle\lim_{x\rightarrow0^+}{\frac{\ln(2x-\tan x^2)}{\frac{1}{x}}}}=e^{\displaystyle\lim_{x\rightarrow0^+}{\frac{\frac{2-2x\sec^2x^2}{2x-\tan x^2}}{-\frac{1}{x^2}}}}=e^{2\displaystyle\lim_{x\rightarrow0^+}{\frac{x^2}{\tan x^2-2x}}}=1 =x0+limesinx(ln(2xtanx2))=ex0+limx1ln(2xtanx2)=ex0+limx212xtanx222xsec2x2=e2x0+limtanx22xx2=1

**【例题10】**若 lim ⁡ x → 0 x − sin ⁡ x + f ( x ) x 4 \displaystyle\lim_{x\rightarrow0}{\frac{x-\sin x+f(x)}{x^4}} x0limx4xsinx+f(x)存在,则 lim ⁡ x → 0 x 3 f ( x ) = \displaystyle\lim_{x\rightarrow0}{\frac{x^3}{f(x)}}= x0limf(x)x3=

A、-36 B、36 C、6 D、-6

【分析】由 lim ⁡ x → 0 x − sin ⁡ x + f ( x ) x 4 \displaystyle\lim_{x\rightarrow0}{\frac{x-\sin x+f(x)}{x^4}} x0limx4xsinx+f(x)存在,得到 lim ⁡ x → 0 x − sin ⁡ x + f ( x ) x 3 = 0 \displaystyle\lim_{x\rightarrow0}{\frac{x-\sin x+f(x)}{x^3}}=0 x0limx3xsinx+f(x)=0,拆开之后答案是-6

**【例题11】**试确定 A , B , C A,B,C A,B,C的值,使得
e x ( 1 + B x + C x 2 ) = 1 + A x + o ( x 3 ) , 其 中 x → 0 e^x(1+Bx+Cx^2)=1+Ax+o(x^3),其中x\rightarrow0 ex(1+Bx+Cx2)=1+Ax+o(x3)x0
【分析】 e x = 1 + x + x 2 2 + x 3 6 + o ( x 3 ) e^x=1+x+\frac{x^2}{2}+\frac{x^3}{6}+o(x^3) ex=1+x+2x2+6x3+o(x3),代入 ( 1 + x + x 2 2 + x 3 6 + o ( x 3 ) ) ( 1 + B x + C x 2 ) \left(1+x+\frac{x^2}{2}+\frac{x^3}{6}+o(x^3)\right)(1+Bx+Cx^2) (1+x+2x2+6x3+o(x3))(1+Bx+Cx2),则 1 + ( 1 + B ) x + ( 1 2 + B + C ) x 2 + ( 1 6 + B 2 + C ) x 3 + o ( x 3 ) = 1 + A x + o ( x 3 ) 1+(1+B)x+(\frac{1}{2}+B+C)x^2+(\frac{1}{6}+\frac{B}{2}+C)x^3+o(x^3)=1+Ax+o(x^3) 1+(1+B)x+(21+B+C)x2+(61+2B+C)x3+o(x3)=1+Ax+o(x3)

求得 A = 1 3 , B = − 2 3 , C = 1 6 A=\frac{1}{3},B=-\frac{2}{3},C=\frac{1}{6} A=31,B=32,C=61

**【例题12】**求极限 lim ⁡ n → ∞ ( 1 + 2 n + 3 n ) 1 n + sin ⁡ n \displaystyle\lim_{n\rightarrow\infty}{\left(1+2^n+3^n\right)^{\frac{1}{n+\sin n}}} nlim(1+2n+3n)n+sinn1

【分析】利用归结原则, lim ⁡ x → + ∞ ( 1 + 2 x + 3 x ) 1 x + sin ⁡ x = e lim ⁡ x → + ∞ ln ⁡ ( 1 + 2 x + 3 x ) x + sin ⁡ x = e lim ⁡ x → + ∞ 2 x ln ⁡ 2 + 3 x ln ⁡ 3 1 + 2 x + 3 x 1 = 3 \displaystyle\lim_{x\rightarrow+\infty}{\left(1+2^x+3^x\right)^{\frac{1}{x+\sin x}}}=e^{\displaystyle\lim_{x\rightarrow+\infty}{\frac{\ln\left(1+2^x+3^x\right)}{x+\sin x}}}=e^{\displaystyle\lim_{x\rightarrow+\infty}{\frac{\frac{2^x\ln 2+3^x\ln 3}{1+2^x+3^x}}{1}}}=3 x+lim(1+2x+3x)x+sinx1=ex+limx+sinxln(1+2x+3x)=ex+lim11+2x+3x2xln2+3xln3=3

由归结原则,得到原极限为3.

【例题13】

(I)设 f ( x ) f(x) f(x) ( 0 , + ∞ ) (0,+\infty) (0,+)内可导, f ′ ( x ) > 0 , x ∈ ( 0 , + ∞ ) f'(x)>0,x\in(0,+\infty) f(x)>0,x(0,+),证明 f ( x ) f(x) f(x) ( 0 , + ∞ ) (0,+\infty) (0,+)内单调增加。

(II)证明 f ( x ) = ( n x + 1 ) − 1 x \displaystyle f(x)=\left(n^x+1\right)^{-\frac{1}{x}} f(x)=(nx+1)x1 ( 0 , + ∞ ) (0,+\infty) (0,+)内单调递增, n > 0 n>0 n>0

(III) x n = ∑ k = 1 n ( n k + 1 ) − 1 k \displaystyle x_n=\sum_{k=1}^{n}\left(n^k+1\right)^{-\frac{1}{k}} xn=k=1n(nk+1)k1,求 lim ⁡ n → ∞ x n \displaystyle\lim_{n\rightarrow{\infty}}{x_n} nlimxn

【解】

证明(I):设KaTeX parse error: Undefined control sequence: \mbox at position 19: …rall x_1,x_2>0,\̲m̲b̲o̲x̲{不妨设}x_1<x_2,则根据拉格朗日中值定理得
f ( x 2 ) − f ( x 1 ) = f ′ ( ξ ) ( x 2 − x 1 ) > 0 f(x_2)-f(x_1)=f'(\xi)\left(x_2-x_1\right)>0 f(x2)f(x1)=f(ξ)(x2x1)>0
所以 f ( x ) f(x) f(x) ( 0 , + ∞ ) (0,+\infty) (0,+)上单调递增。

(II)
KaTeX parse error: Undefined control sequence: \mbox at position 260: …\ \Rightarrow \̲m̲b̲o̲x̲{令}g(x) & =x\ln…
所以 g ( n x + 1 ) > g ( n x ) g(n^x+1)>g(n^x) g(nx+1)>g(nx),即 f ′ ( x ) > 0 , x > 0 f'(x)>0,x>0 f(x)>0,x>0,即 f ( x ) f(x) f(x) ( 0 , + ∞ ) (0,+\infty) (0,+)上单调递增

(III)由于 f ( x ) f(x) f(x)单调递增,所以 f ( 1 ) < f ( 2 ) < ⋯ < f ( n ) f(1)<f(2)<\cdots<f(n) f(1)<f(2)<<f(n),则
∑ k = 1 n ( n + 1 ) − 1 < ∑ k = 1 n ( n k + 1 ) − 1 k < ∑ k = 1 n ( n n + 1 ) − 1 n \sum_{k=1}^{n}\left(n+1\right)^{-1}<\sum_{k=1}^{n}\left(n^k+1\right)^{-\frac{1}{k}}<\sum_{k=1}^{n}\left(n^n+1\right)^{-\frac{1}{n}} k=1n(n+1)1<k=1n(nk+1)k1<k=1n(nn+1)n1
因为 lim ⁡ n → ∞ ∑ k = 1 n 1 n + 1 = lim ⁡ n → ∞ ∑ k = 1 n 1 ( n n + 1 ) 1 n = 1 \displaystyle\lim_{n\rightarrow\infty}{\sum_{k=1}^{n}\frac{1}{n+1}}=\lim_{n\rightarrow\infty}{\sum_{k=1}^{n}\frac{1}{\left(n^n+1\right)^{\frac{1}{n}}}}=1 nlimk=1nn+11=nlimk=1n(nn+1)n11=1,所以原极限为1.

【例题14】

(I)证明方程 x = 2 ln ⁡ ( 1 + x ) x=2\ln (1+x) x=2ln(1+x) ( 0 , + ∞ ) (0,+\infty) (0,+)内有唯一实根 ξ \xi ξ

(II)设 x 1 > ξ x_1>\xi x1>ξ,定义 x n + 1 = 2 ln ⁡ ( 1 + x n ) , n = 1 , 2 , 3 , ⋯ x_{n+1}=2\ln\left(1+x_n\right),n=1,2,3,\cdots xn+1=2ln(1+xn),n=1,2,3,,证明 lim ⁡ n → ∞ x n = ξ \displaystyle\lim_{n\rightarrow\infty}{x_n=\xi} nlimxn=ξ

【解】

(I)令 f ( x ) = x − 2 ln ⁡ ( 1 + x ) f(x)=x-2\ln(1+x) f(x)=x2ln(1+x),则 f ′ ( x ) = 1 − 2 1 + x = x − 1 x + 1 = 0 ⇒ x = 1 \displaystyle f'(x)=1-\frac{2}{1+x}=\frac{x-1}{x+1}=0\Rightarrow x=1 f(x)=11+x2=x+1x1=0x=1,有唯一驻点,

⇒ f ( x ) \Rightarrow f(x) f(x) ( 0 , 1 ) (0,1) (0,1)上单调递减,在 ( 1 , + ∞ ) (1,+\infty) (1,+)上单调递增,且 f ( 1 ) < 0 f(1)<0 f(1)<0

又因为 lim ⁡ x → + ∞ f ( x ) = + ∞ \displaystyle\lim_{x\rightarrow{+\infty}}{f(x)}=+\infty x+limf(x)=+,所以根据零点存在定理, ∃ ξ ∈ ( 1 , + ∞ ) ⊂ ( 0 , + ∞ ) \exists\xi\in(1,+\infty)\subset(0,+\infty) ξ(1,+)(0,+)使得 f ( x ) = 0 f(x)=0 f(x)=0,又因为 f ( x ) f(x) f(x) ( 1 , + ∞ ) (1,+\infty) (1,+) 上单调增,所以 ξ \xi ξ唯一存在。

(II)因为 x 1 > ξ x_1>\xi x1>ξ,所以
f ( x 1 ) = x 1 − 2 ln ⁡ ( 1 + x 1 ) > f ( ξ ) = 0 , ⇒ x 1 > 2 ln ⁡ ( 1 + x 1 ) = x 2 f(x_1)=x_1-2\ln(1+x_1)>f(\xi)=0,\Rightarrow x_1>2\ln(1+x_1)=x_2 f(x1)=x12ln(1+x1)>f(ξ)=0,x1>2ln(1+x1)=x2
假设 x k > x k + 1 x_k>x_{k+1} xk>xk+1
x k + 1 > 2 ln ⁡ ( 1 + x k + 1 ) = x k + 2 x_{k+1}>2\ln(1+x_{k+1})=x_{k+2} xk+1>2ln(1+xk+1)=xk+2
所以 { x n } \{x_n\} { xn}单调递减。

因为 x 1 > ξ x_1>\xi x1>ξ,所以 2 ln ⁡ ( 1 + x 1 ) > 2 ln ⁡ ( 1 + ξ ) 2\ln(1+x_1)>2\ln(1+\xi) 2ln(1+x1)>2ln(1+ξ),所以 x 2 > ξ x_2>\xi x2>ξ

假设 x k > ξ x_k>\xi xk>ξ,则 2 ln ⁡ ( 1 + x k ) > 2 ln ⁡ ( 1 + ξ ) 2\ln(1+x_k)>2\ln(1+\xi) 2ln(1+xk)>2ln(1+ξ),则 x k + 1 > ξ x_{k+1}>\xi xk+1>ξ

所以, x n > ξ x_n>\xi xn>ξ

所以数列 { x n } \{x_n\} { xn}单调递减有下界,所以极限 lim ⁡ n → ∞ x n \displaystyle \lim_{n\rightarrow \infty}{x_n} nlimxn存在,设为 A A A,所以 A = 2 ln ⁡ ( 1 + A ) A=2\ln(1+A) A=2ln(1+A)

因为 x n > ξ x_n>\xi xn>ξ,所以 lim ⁡ n → ∞ ( x n − ξ ) = A − ξ ≥ 0 \displaystyle\lim_{n\rightarrow\infty}{(x_n-\xi)}=A-\xi\geq0 nlim(xnξ)=Aξ0,根据极限的保号性,即 A ≥ ξ A\geq\xi Aξ,所以 A = ξ A=\xi A=ξ

【例题15】 f ( x ) = ∣ x ∣ x − 1 x ( x + 1 ) ln ⁡ ∣ x ∣ \displaystyle f(x)=\frac{|x|^x-1}{x(x+1)\ln|x|} f(x)=x(x+1)lnxxx1的可去间断点个数为

【解】无定以点为 x = 0 , x = − 1 , x = 1 x=0,x=-1,x=1 x=0,x=1,x=1
lim ⁡ x → 0 ∣ x ∣ x − 1 x ( x + 1 ) ln ⁡ ∣ x ∣ = lim ⁡ x → 0 e x ln ⁡ ∣ x ∣ − 1 x ( x + 1 ) ln ⁡ ∣ x ∣ = 1 lim ⁡ x → − 1 ∣ x ∣ x − 1 x ( x + 1 ) ln ⁡ ∣ x ∣ = ∞ lim ⁡ x → 1 ∣ x ∣ x − 1 x ( x + 1 ) ln ⁡ ∣ x ∣ = 1 2 \lim_{x\rightarrow0}{\frac{|x|^x-1}{x(x+1)\ln|x|}}=\lim_{x\rightarrow0}{\frac{e^{x\ln|x|-1}}{x(x+1)\ln|x|}}=1\\ \lim_{x\rightarrow -1}{\frac{|x|^x-1}{x(x+1)\ln|x|}}=\infty\\ \lim_{x\rightarrow1}{\frac{|x|^x-1}{x(x+1)\ln|x|}}=\frac{1}{2} x0limx(x+1)lnxxx1=x0limx(x+1)lnxexlnx1=1x1limx(x+1)lnxxx1=x1limx(x+1)lnxxx1=21
可去间断点有2个。

**【例题16】**设 f ( x ) = { x ( x 2 − 4 ) sin ⁡ π x , x < 0 x ( x 2 − 1 ) x − 1 , x ≥ 0 \displaystyle f(x)=\left\{\begin{aligned} \frac{x(x^2-4)}{\sin\pi x}&,x<0 \\ \frac{x(x^2-1)}{x-1}&,x\geq0 \end{aligned}\right. f(x)=sinπxx(x24)x1x(x21),x<0,x0,讨论其连续性

分段点 x = 0 x=0 x=0

无定义点 x = 1 , x = 0 , 1 , − 1 , 2 , − 2 , ⋯ x=1,x=0,1,-1,2,-2,\cdots x=1,x=0,1,1,2,2,

第二讲、一元函数微积分学

核心考点

1)定义

2)计算

3)应用:几何应用、物理应用

4)逻辑证明:中值定理、方程的根、不等式等

1.定义

综述:导数、微分、不定积分、定积分、变限积分、反常积分

1)导数
f ′ ( x 0 ) = lim ⁡ Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x = lim ⁡ x → x 0 f ( x ) − f ( x 0 ) x − x 0 f'(x_0)=\lim_{\Delta x\rightarrow0}{\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x}}=\lim_{x\rightarrow x_0}{\frac{f(x)-f(x_0)}{x-x_0}} f(x0)=Δx0limΔxf(x0+Δx)f(x0)=xx0limxx0f(x)f(x0)
2)微分

  • Δ y = f ( x 0 + Δ x ) − f ( x 0 ) \Delta y=f(x_0+\Delta x)-f(x_0) Δy=f(x0+Δx)f(x0)
  • A Δ x = f ′ ( x 0 ) Δ x A\Delta x=f'(x_0)\Delta x AΔx=f(x0)Δx:线性增量
  • lim ⁡ Δ x → 0 Δ y − A Δ x Δ x = 0 ⇒ f ( x ) \displaystyle\lim_{\Delta x\rightarrow0}{\frac{\Delta y-A\Delta x}{\Delta x}}=0\Rightarrow f(x) Δx0limΔxΔyAΔx=0f(x) x 0 x_0 x0处可微

考点

Δ y = A Δ x + o ( Δ x ) \Delta y=A\Delta x+o(\Delta x) Δy=AΔx+o(Δx)

其中:$A\Delta x$称为 **线性主部**$o(\Delta x)$称之为**误差(error)**

d y ∣ x = x 0 = A d x = f ′ ( x 0 ) d x dy|_{x=x_0}=Adx=f'(x_0)dx dyx=x0=Adx=f(x0)dx

3)不定积分

  • 定义

原函数:设 f ( x ) f(x) f(x)定义在某区间 I I I上,若存在可导函数 F ( x ) F(x) F(x)使 F ′ ( x ) = f ( x ) F'(x)=f(x) F(x)=f(x),对 ∀ x ∈ I \forall x\in I xI都成立,简称 F ( x ) F(x) F(x) f ( x ) f(x) f(x) I I I上的一个原函数。

不定积分:所有原函数记作 ∫ f ( x ) d x = F ( x ) + C \int f(x)dx=F(x)+C f(x)dx=F(x)+C,称之为不定积分。

  • 原函数存在定理

a.连续函数必存在原函数(考察过证明),原函数与不定积分的关系 ∫ f ( x ) d x = ∫ a x f ( t ) d t + C \displaystyle\int f(x)dx=\int_a^xf(t)dt+C f(x)dx=axf(t)dt+C

假设 f ( x ) f(x) f(x) I I I上连续,证明: F ( x ) = ∫ a x f ( t ) d t , ( a , x ∈ I ) F(x)=\displaystyle\int_{a}^{x}f(t)dt,(a,x\in I) F(x)=axf(t)dt,(a,xI)比可导,且 F ′ ( x ) = f ( x ) , ∀ x ∈ I F'(x)=f(x),\forall x\in I F(x)=f(x),xI

【证明】导数定义
F ′ ( x ) = lim ⁡ Δ x → 0 F ( x + Δ x ) − F ( x ) Δ x = lim ⁡ Δ x → 0 ∫ a x + Δ x f ( t ) d t − ∫ a x f ( t ) d t Δ x = lim ⁡ Δ x → 0 ∫ x x + Δ x f ( t ) d t Δ x = lim ⁡ ξ → x f ( ξ ) Δ x Δ x = f ( x ) , ξ 介 于 x , x + Δ x 之 间 F'(x)=\lim_{\Delta x\rightarrow0}{\frac{F(x+\Delta x)-F(x)}{\Delta x}}=\lim_{\Delta x\rightarrow0}{\frac{\displaystyle\int_{a}^{x+\Delta x}f(t)dt-\int_{a}^{x}f(t)dt}{\Delta x}}=\lim_{\Delta x\rightarrow0}{\frac{\displaystyle\int_{x}^{x+\Delta x}f(t)dt}{\Delta x}}=\\\lim_{\xi\rightarrow x}{\frac{f(\xi)\Delta x}{\Delta x}}=f(x),\xi介于x,x+\Delta x之间 F(x)=Δx0limΔxF(x+Δx)F(x)=Δx0limΔxax+Δxf(t)dtaxf(t)dt=Δx0limΔxxx+Δxf(t)dt=ξxlimΔxf(ξ)Δx=f(x)ξx,x+Δx
b.含有跳跃、可去、无穷间断点的 f ( x ) f(x) f(x)在此区间上无原函数

c.含有震荡间断点的 f ( x ) f(x) f(x)在此区间上可能有也可能没有原函数

4)定积分

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-wS0d2oXV-1594800330592)(D:\考研资料\数学\图片1.png)]

定积分的精确定义:

∫ a b f ( x ) d x = lim ⁡ λ → 0 ∑ i = 1 n f ( ξ i ) Δ x i = lim ⁡ n ⇒ ∞ ∑ i = 1 n f ( a + b − a n i ) b − a n = lim ⁡ n ⇒ ∞ ∑ i = 1 n f ( i n ) 1 n \displaystyle\int_a^bf(x)dx=\lim_{\lambda\rightarrow0}{\sum_{i=1}^{n} f(\xi_i)\Delta x_i}=\lim_{n\Rightarrow\infty}{\sum_{i=1}^{n}f\left(a+\frac{b-a}{n}i\right)\frac{b-a}{n}}=\lim_{n\Rightarrow\infty}{\sum_{i=1}^{n}f\left(\frac{i}{n}\right)\frac{1}{n}} abf(x)dx=λ0limi=1nf(ξi)Δxi=nlimi=1nf(a+nbai)nba=nlimi=1nf(ni)n1

5)变限积分

【注】

f ( x ) f(x) f(x)连续 ⇒ F ( x ) = ∫ a x f ( t ) d t \Rightarrow F(x)=\displaystyle\int_a^xf(t)dt F(x)=axf(t)dt可导

f ( x ) f(x) f(x)可积 ⇒ F ( x ) = ∫ a x f ( t ) d t \Rightarrow F(x)=\displaystyle\int_a^xf(t)dt F(x)=axf(t)dt连续

变限积分求导
( ∫ φ 1 ( x ) φ 2 ( x ) f ( t )   d t ) ′ = f ( φ 2 ( x ) ) ⋅ φ 2 ′ ( x ) − f ( φ 1 ( x ) ) ⋅ φ 1 ′ ( x ) \left(\int_{\varphi_1(x)}^{\varphi_2(x)}f(t)\ dt\right)'=f(\varphi_2(x))\cdot\varphi'_2(x)-f(\varphi_1(x))\cdot\varphi'_1(x) (φ1(x)φ2(x)f(t) dt)=f(φ2(x))φ2(x)f(φ1(x))φ1(x)
6)反常积分

定义

①破坏 [ a , b ] [a,b] [a,b]有限性 ⇒ ∫ a + ∞ f ( x )   d x , ∫ − ∞ b f ( x )   d x , ∫ − ∞ + ∞ f ( x )   d x \displaystyle\Rightarrow\int_a^{+\infty}f(x)\ dx,\int_{-\infty}^bf(x)\ dx,\int_{-\infty}^{+\infty}f(x)\ dx a+f(x) dx,bf(x) dx,+f(x) dx ,称为无穷区间的反常积分。

②破坏 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上的有界性 ⇒ ∫ a b f ( x ) d x \Rightarrow\displaystyle\int_a^bf(x)dx abf(x)dx,其中 lim ⁡ x → b − f ( x ) = ∞ \displaystyle\lim_{x\rightarrow b^-}{f(x)}=\infty xblimf(x)=,称 b b b为瑕点,称此积分为无界函数的反常积分。

判别依据:“足够进则收敛,不够近则发散”

∫ 1 + ∞ 1 x p   d x \displaystyle\int_{1}^{+\infty}\frac{1}{x^p}\ dx 1+xp1 dx,当 p > 1 p>1 p>1时,收敛;当 p ≤ 1 p\leq1 p1时,发散

∫ 0 1 1 x p   d x \displaystyle\int_0^1\frac{1}{x^p}\ dx 01xp1 dx,当 p < 1 p<1 p<1时收敛;当 p ≥ 1 p\geq1 p1时,发散

2.计算

(1)基本公式(熟稔于心)

(2)求导

  • 复合函数求导
  • 隐函数求导
  • 反函数求导
  • 对数求导法
  • 分段函数求导
  • 高阶导数(泰勒公式、莱布尼兹公式)【重点】

(3)积分

  • 凑微分
  • 换元法
  • 分部积分法
  • 有理函数积分法

(4)几何应用

  • 导数(极值点、最值点、拐点、单调性、凹凸性、渐近线)——研究函数性态

1)极值与单调性

f ( x ) f(x) f(x) x = x 0 x=x_0 x=x0处连续,在 ( x 0 − δ , x 0 ) (x_0-\delta,x_0) (x0δ,x0) f ′ ( x ) f'(x) f(x)与在 ( x 0 , x 0 + δ ) (x_0,x_0+\delta) (x0,x0+δ) f ′ ( x ) f'(x) f(x)异号,则 x 0 x_0 x0为极值点。

f ( x ) f(x) f(x) x 0 x_0 x0处二阶可导,一阶导数等于0,二阶导数不等于0,此时 x 0 x_0 x0为极值点。

2)拐点与凹凸性

f ( x ) f(x) f(x) x = x 0 x=x_0 x=x0处连续,左右两侧二阶导数异号,则 ( x 0 , f ( x 0 ) ) (x_0,f(x_0)) (x0,f(x0))为拐点。

f ( x ) f(x) f(x) x 0 x_0 x0处三阶可导,此处二阶导数等于0,三阶导数不等于0,则 ( x 0 , f ( x 0 ) ) (x_0,f(x_0)) (x0,f(x0))为拐点。

**【极值证明】**构造极限
lim ⁡ x → x 0 f ( x ) − f ( x 0 ) ( x − x 0 ) 2 \lim_{x\rightarrow x_0}\frac{f(x)-f(x_0)}{(x-x_0)^2} xx0lim(xx0)2f(x)f(x0)
**【拐点证明】**构造极限
lim ⁡ x → x 0 f ′ ′ ( x ) x − x 0 \lim_{x\rightarrow x_0}{\frac{f''(x)}{x-x_0}} xx0limxx0f(x)
3)渐近线

  • 铅锤渐近线(无定以点)
  • 水平渐近线( lim ⁡ x → ± ∞ y ( x ) \displaystyle\lim_{x\rightarrow\pm\infty}{y(x)} x±limy(x)
  • 斜渐近线,考查( lim ⁡ x → ± ∞ y x = k \displaystyle\lim_{x\rightarrow\pm\infty}{\frac{y}{x}}=k x±limxy=k

4)最值点

找可疑点

3.逻辑证明

  • 十大定理

例题

**【例题1】**设 F ( x ) = { x 2 sin ⁡ 1 x , x ≠ 0 0 , x = 0 \displaystyle F(x)=\left\{ \begin{aligned} x^2\sin\frac{1}{x}&,x\neq0 \\ 0&,x=0 \end{aligned} \right. F(x)=x2sinx10,x=0,x=0 F ′ ( x ) F'(x) F(x)

【分析】分段函数求导规则,分段点用定义求,非分段点用公式(凡是遇到一点的导数,利用定义

x = 0 x=0 x=0时,则 F ′ ( 0 ) = lim ⁡ x → 0 F ( x ) − F ( 0 ) x = 0 F'(0)=\displaystyle\lim_{x\rightarrow0}{\frac{F(x)-F(0)}{x}}=0 F(0)=x0limxF(x)F(0)=0

x ≠ 0 x\neq0 x=0,则 F ′ ( x ) = 2 x sin ⁡ 1 x − 1 x cos ⁡ 1 x F'(x)=2x\sin\frac{1}{x}-\frac{1}{x}\cos\frac{1}{x} F(x)=2xsinx1x1cosx1

F ′ ( x ) = { 2 x sin ⁡ 1 x − 1 x cos ⁡ 1 x , x ≠ 0 0 , x = 0 F'(x)=\displaystyle\left\{\begin{aligned}2x\sin\frac{1}{x}-\frac{1}{x}\cos\frac{1}{x}&,x\neq0\\ 0&,x=0\end{aligned}\right. F(x)=2xsinx1x1cosx10,x=0,x=0

**【例题2】**设常数 α > 0 \alpha>0 α>0,函数 f ( x ) = { x α sin ⁡ 1 x , x > 0 0 , x = 0 1 n α , − 1 n < x ≤ − 1 n + 1 , n = 1 , 2 , ⋯ f(x)=\displaystyle\left\{\begin{aligned} x^\alpha\sin\frac{1}{x}&,x>0\\0&,x=0\\\frac{1}{n^\alpha}&,-\frac{1}{n}<x\leq-\frac{1}{n+1},n=1,2,\cdots \end{aligned}\right. f(x)=xαsinx10nα1,x>0,x=0,n1<xn+11,n=1,2,,则 f ( x ) f(x) f(x) x = 0 x=0 x=0

A、不连续

B、连续但不可导

C、可导, f ′ ( 0 ) = α f'(0)=\alpha f(0)=α

D、可导, f ′ ( 0 ) = 0 f'(0)=0 f(0)=0

【分析】用导数定义
f + ′ ( 0 ) = lim ⁡ x → 0 + f ( x ) − f ( 0 ) x = 0 f ′ − ( 0 ) = lim ⁡ x → 0 − f ( x ) − f ( 0 ) x = lim ⁡ x → 0 − f ( x ) x = 0 , 其 中 − n + 1 n α ≤ f ( x ) x < − n n α f_+'(0)=\lim_{x\rightarrow0^+}{\frac{f(x)-f(0)}{x}}=0\\ {f'}_-(0)=\lim_{x\rightarrow0^-}{\frac{f(x)-f(0)}{x}}=\lim_{x\rightarrow0^-}{\frac{f(x)}{x}}=0,其中-\frac{n+1}{n^\alpha}\leq\frac{f(x)}{x}<-\frac{n}{n^\alpha} f+(0)=x0+limxf(x)f(0)=0f(0)=x0limxf(x)f(0)=x0limxf(x)=0nαn+1xf(x)<nαn
所以可导,且导函数为0,选D

**【例题3】**设函数 f ( x ) f(x) f(x)在区间 ( − δ , δ ) (-\delta,\delta) (δ,δ)内有定义,若当 x ∈ ( − δ , δ ) x\in(-\delta,\delta) x(δ,δ)时,恒有 ∣ f ( x ) ∣ ≤ x 2 |f(x)|\leq x^2 f(x)x2,则 x = 0 x=0 x=0必是 f ( x ) f(x) f(x)

A、间断点

B、连续,但不可导的点

C、可导的点,且 f ′ ( 0 ) = 0 f'(0)=0 f(0)=0

D、可导的点,且 f ′ ( 0 ) ≠ 0 f'(0)\neq0 f(0)=0

【分析】由题意得, f ( 0 ) = 0 f(0)=0 f(0)=0
f ′ ( 0 ) = lim ⁡ x → 0 f ( x ) x f'(0)=\lim_{x\rightarrow0}{\frac{f(x)}{x}} f(0)=x0limxf(x)
因为
lim ⁡ x → 0 ∣ f ( x ) x ∣ = lim ⁡ x → 0 ∣ f ( x ) ∣ ∣ x ∣ ≤ lim ⁡ x → 0 x 2 ∣ x ∣ = 0 \lim_{x\rightarrow0}{\left|\frac{f(x)}{x}\right|}=\lim_{x\rightarrow0}{\frac{|f(x)|}{|x|}}\leq\lim_{x\rightarrow0}{\frac{x^2}{|x|}}=0 x0limxf(x)=x0limxf(x)x0limxx2=0
所以 f ′ ( 0 ) = 0 f'(0)=0 f(0)=0,选C

**【例题4】**设 f ( u ) f(u) f(u)可导, y = f ( x 2 ) y=f(x^2) y=f(x2),当 x x x x = − 1 x=-1 x=1处取 Δ x = − 0.1 \Delta x=-0.1 Δx=0.1时, Δ y \Delta y Δy的线性主部为 0.1 0.1 0.1,则 f ′ ( 1 ) = f'(1)= f(1)=____________

【分析】
d y ∣ x = − 1 = f ′ ( x 2 ) 2 x Δ x 0.1 = f ′ ( ( − 1 ) 2 ) × 2 × ( − 1 ) × ( − 0.1 ) ⇒ f ′ ( 1 ) = 1 2 dy|_{x=-1}=f'(x^2)2x\Delta x\\ 0.1=f'((-1)^2)\times2\times(-1)\times(-0.1)\Rightarrow f'(1)=\frac{1}{2} dyx=1=f(x2)2xΔx0.1=f((1)2)×2×(1)×(0.1)f(1)=21
**【例题5】**设 M = ∫ − π 2 π 2 ( 1 + x ) 2 1 + x 2 d x , N = ∫ − π 2 π 2 1 + x e x d x , K = ∫ − π 2 π 2 ( 1 + cos ⁡ x ) d x \displaystyle M=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\frac{(1+x)^2}{1+x^2}dx,N=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\frac{1+x}{e^x}dx,K=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(1+\sqrt{\cos x}\right)dx M=2π2π1+x2(1+x)2dx,N=2π2πex1+xdx,K=2π2π(1+cosx )dx,则

A、 M > N > K M>N>K M>N>K

B、 M > K > N M>K>N M>K>N

C、 K > M > N K>M>N K>M>N

D、 K > N > M K>N>M K>N>M

**【例题6】**设 f ( x ) = { cos ⁡ x , x ≥ 0 sin ⁡ x , x ≤ 0 , g ( x ) = { x sin ⁡ 1 x , x ≠ 0 0 , x = 0 f(x)=\left\{\begin{aligned} \cos x,x\geq0\\ \sin x,x\leq0 \end{aligned}\right.,g(x)=\left\{\begin{aligned} x\sin\frac{1}{x},x\neq0\\0,x=0 \end{aligned}\right. f(x)={ cosx,x0sinx,x0,g(x)=xsinx1,x=00,x=0在区间 ( − 1 , 1 ) (-1,1) (1,1)上()

A、 f ( x ) f(x) f(x) g ( x ) g(x) g(x)都存在原函数

B、 f ( x ) f(x) f(x) g ( x ) g(x) g(x)都不存在原函数

C、 f ( x ) f(x) f(x)存在原函数, g ( x ) g(x) g(x)不存在原函数

D、 f ( x ) f(x) f(x)不存在原函数, g ( x ) g(x) g(x)存在原函数

【分析】首先 f ( x ) f(x) f(x) x = 0 x=0 x=0除有跳跃间断点,而 g ( x ) g(x) g(x)又是连续的,连续函数必有原函数,所以选D

**【例题7】**设 f ( x ) f(x) f(x)是奇函数,除 x = 0 x=0 x=0以外处处连续, x = 0 x=0 x=0是其第一类间断点,则 F ( x ) = ∫ 0 x f ( t ) d t F(x)=\displaystyle\int_0^xf(t)dt F(x)=0xf(t)dt是()

A、连续的奇函数

B、连续的偶函数

C、 x = 0 x=0 x=0为间断点的奇函数

D、 x = 0 x=0 x=0为间断点的偶函数

【分析】根据图像,选B

证明:设 f ( x ) f(x) f(x)是可积的奇函数,则 ∫ 0 x f ( t ) d t \displaystyle\int_0^xf(t)dt 0xf(t)dt是偶函数。
F ( − x ) = ∫ 0 − x f ( t ) d t = ∫ 0 x f ( − u ) d ( − u ) = ∫ 0 x f ( u ) d u = F ( x ) F(-x)=\int_0^{-x}f(t)dt=\int_0^xf(-u)d(-u)=\int_0^xf(u)du=F(x) F(x)=0xf(t)dt=0xf(u)d(u)=0xf(u)du=F(x)
【注】 ∫ a x f ( t ) d t \displaystyle\int_a^xf(t)dt axf(t)dt也是偶函数(拆成两个区间,得到常数+偶函数)

**【例题8】**设 f ( x ) f(x) f(x) ( − ∞ , + ∞ ) (-\infty,+\infty) (,+)上连续,且以 T T T为周期,证明:

(1) ∫ a a + T f ( x ) d x = ∫ 0 T f ( x ) d x ( a 为 任 意 常 数 ) \displaystyle\int_a^{a+T}f(x)dx=\int_0^Tf(x)dx(a为任意常数) aa+Tf(x)dx=0Tf(x)dx(a)

(2) ∫ 0 x f ( t ) d t \displaystyle\int_0^xf(t)dt 0xf(t)dt是以 T T T为周期 ⇔ ∫ 0 T f ( t ) d t = 0 \Leftrightarrow\displaystyle\int_0^Tf(t)dt=0 0Tf(t)dt=0

(3) ∫ f ( x ) d x \displaystyle\int f(x)dx f(x)dx周期为 T ⇔ ∫ 0 T f ( t ) d t = 0 T\Leftrightarrow\displaystyle\int_0^Tf(t)dt=0 T0Tf(t)dt=0

【证明】

(1)
∫ a a + T f ( t ) d t = ∫ a 0 f ( t ) d t + ∫ 0 T f ( t ) d t + ∫ T a + T f ( t ) d t \int_a^{a+T}f(t)dt=\int_a^0f(t)dt+\int_0^{T}f(t)dt+\int_T^{a+T}f(t)dt aa+Tf(t)dt=a0f(t)dt+0Tf(t)dt+Ta+Tf(t)dt
u = x − T u=x-T u=xT
∫ T x + T f ( t ) d t = ∫ 0 a f ( u + T ) d u = ∫ 0 a f ( u ) d u \int_T^{x+T}f(t)dt=\int_0^af(u+T)du=\int_0^af(u)du Tx+Tf(t)dt=0af(u+T)du=0af(u)du

∫ a a + t f ( x ) d x = ∫ a 0 f ( t ) d t + ∫ 0 T f ( t ) d t + ∫ 0 a f ( u ) d u = ∫ 0 T f ( t ) d t \int_a^{a+t}f(x)dx=\int_a^0f(t)dt+\int_0^Tf(t)dt+\int_0^af(u)du=\int_0^Tf(t)dt aa+tf(x)dx=a0f(t)dt+0Tf(t)dt+0af(u)du=0Tf(t)dt
周期函数在一个周期上的积分值与起点无关

(2)
∫ 0 x + T f ( t ) d t − ∫ 0 x f ( t ) d t = ∫ x x + T f ( t ) d t = ∫ 0 T f ( t ) d t \int_0^{x+T}f(t)dt-\int_0^xf(t)dt=\int_{x}^{x+T}f(t)dt=\int_0^{T}f(t)dt 0x+Tf(t)dt0xf(t)dt=xx+Tf(t)dt=0Tf(t)dt
∫ 0 x f ( t ) d t \displaystyle\int_0^xf(t)dt 0xf(t)dt为周期函数,则 ∫ 0 x + T f ( t ) d t − ∫ 0 x f ( t ) d t = 0 \displaystyle\int_0^{x+T}f(t)dt-\int_0^xf(t)dt=0 0x+Tf(t)dt0xf(t)dt=0

所以: ∫ 0 T f ( t ) d t = 0 \displaystyle\int_0^Tf(t)dt=0 0Tf(t)dt=0

(3)
F ( x ) = ∫ f ( x ) d x = ∫ a x f ( t ) d t + C F(x) = \int f(x)dx=\int_a^xf(t)dt+C F(x)=f(x)dx=axf(t)dt+C
**【例题9】**设 f ( x ) f(x) f(x)是以 T T T为周期的可微函数,则下列函数是以周期为 T T T的函数是()

A、 ∫ 0 x f ( t ) d t \displaystyle\int_0^xf(t)dt 0xf(t)dt

B、 ∫ 0 x f ( t 2 ) d t \displaystyle\int_0^xf(t^2)dt 0xf(t2)dt

C、 ∫ 0 x f ′ ( t 2 ) d t \displaystyle\int_0^xf'(t^2)dt 0xf(t2)dt

D、 ∫ 0 x f ( t ) f ′ ( t ) d t \displaystyle\int_0^xf(t)f'(t)dt 0xf(t)f(t)dt

【分析】充要条件 ∫ 0 T f ( t ) d t = 0 \displaystyle\int_0^Tf(t)dt=0 0Tf(t)dt=0
∫ 0 T f ( t ) f ′ ( t ) d t = ∫ 0 T f ( t ) d f ( t ) = 1 2 f 2 ( t ) ∣ 0 T = 1 2 [ f 2 ( T ) − f 2 ( 0 ) ] = 0 \int_0^Tf(t)f'(t)dt=\int_0^Tf(t)df(t)=\frac{1}{2}f^2(t)|_0^T=\frac{1}{2}\left[f^2(T)-f^2(0)\right]=0 0Tf(t)f(t)dt=0Tf(t)df(t)=21f2(t)0T=21[f2(T)f2(0)]=0
选D

**【例题10】**设 f ( x ) f(x) f(x) ( 0 , + ∞ ) (0,+\infty) (0,+)上可导,则( )

A:举例 f ( x ) = sin ⁡ x 2 f(x)=\sin x^2 f(x)=sinx2

B:举例 f ( x ) = C ( C ≠ 0 ) f(x)=C(C\neq0) f(x)=C(C=0)

C:举例 f ( x ) = sin ⁡ 1 x f(x)=\sin\frac{1}{x} f(x)=sinx1

D:正确。【定理】设 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]有限区间可导,且 f ′ ( x ) f'(x) f(x)有界, ∀ x ∈ ( a , b ) \forall x\in(a,b) x(a,b) f ( x ) f(x) f(x)有界。

证明:在 ( x , x 0 ) (x,x_0) (x,x0)上用拉格朗日中值定理,得
f ( x ) − f ( x 0 ) = f ′ ( ξ ) ( x − x 0 ) , ξ 介 于 x , x 0 之 间 f ( x ) = f ( x 0 ) + f ′ ( ξ ) ( x − x 0 ) ⇒ ∣ f ( x ) ∣ = ∣ f ( x 0 ) + f ′ ( ξ ) ( x − x 0 ) ∣ ≤ ∣ f ( x 0 ) ∣ + ∣ f ′ ( x 0 ) ∣ ∣ x − x 0 ∣ ≤ ∣ f ( x 0 ) ∣ + M ( b − a ) = K f(x)-f(x_0)=f'(\xi)(x-x_0),\xi介于x,x_0之间\\ f(x)=f(x_0)+f'(\xi)(x-x_0)\\ \Rightarrow|f(x)|=|f(x_0)+f'(\xi)(x-x_0)|\\ \leq|f(x_0)|+|f'(x_0)||x-x_0|\leq|f(x_0)|+M(b-a)=K f(x)f(x0)=f(ξ)(xx0)ξx,x0f(x)=f(x0)+f(ξ)(xx0)f(x)=f(x0)+f(ξ)(xx0)f(x0)+f(x0)xx0f(x0)+M(ba)=K
**【例题11】**求极限 lim ⁡ n → ∞ ∑ i = 1 n n + i n 2 + i 2 \displaystyle\lim_{n\rightarrow\infty}{\sum_{i=1}^{n}\frac{n+i}{n^2+i^2}} nlimi=1nn2+i2n+i

【解】 lim ⁡ n → ∞ 1 n ∑ i = 1 n n 2 + n i n 2 + i 2 = lim ⁡ n → ∞ 1 n ∑ i = 1 n 1 + i n 1 + i 2 n 2 = ∫ 0 1 1 + x 1 + x 2 = π 4 + ln ⁡ 2 \displaystyle\lim_{n\rightarrow\infty}{\frac{1}{n}\sum_{i=1}^{n}\frac{n^2+ni}{n^2+i^2}}=\lim_{n\rightarrow\infty}{\frac{1}{n}\sum_{i=1}^{n}\frac{1+\frac{i}{n}}{1+\frac{i^2}{n^2}}}=\int_0^1\frac{1+x}{1+x^2}=\frac{\pi}{4}+\ln 2 nlimn1i=1nn2+i2n2+ni=nlimn1i=1n1+n2i21+ni=011+x21+x=4π+ln2

**【例题12】**求极限 lim ⁡ n → ∞ ∑ i = 1 n sin ⁡ i π n n + 1 \displaystyle\lim_{n\rightarrow\infty}{\sum_{i=1}^{n}\frac{\sin\frac{i\pi}{n}}{n+1}} nlimi=1nn+1sinniπ

【解】
lim ⁡ n → ∞ ∑ i = 1 n sin ⁡ i π n n + 1 = lim ⁡ n → ∞ n n + 1 ⋅ 1 n ∑ i = 1 n sin ⁡ i π n = ∫ 0 1 sin ⁡ π x   d x = 2 π \lim_{n\rightarrow\infty}{\frac{\displaystyle\sum_{i=1}^{n}\sin\frac{i\pi}{n}}{n+1}}=\lim_{n\rightarrow\infty}{\frac{n}{n+1}\cdot\frac{1}{n}\sum_{i=1}^{n}\sin\frac{i\pi}{n}}=\int_0^1\sin\pi x\ dx=\frac{2}{\pi} nlimn+1i=1nsinniπ=nlimn+1nn1i=1nsinniπ=01sinπx dx=π2
==【例题13】==设 f ( x ) f(x) f(x)连续,则 ( ∫ 0 x t f ( x 2 − t 2 )   d t ) ′ = \displaystyle\left(\int_0^xtf(x^2-t^2)\ dt\right)'= (0xtf(x2t2) dt)=

【解】
∫ 0 x t f ( x 2 − t 2 )   d t = 1 2 ∫ 0 x f ( x 2 − t 2 )   d t 2 = 1 2 ∫ 0 x 2 f ( u )   d u ⇒ ( ∫ 0 x t f ( x 2 − t 2 )   d t ) ′ = x f ( x ) \int_0^xtf(x^2-t^2)\ dt=\frac{1}{2}\int_0^xf(x^2-t^2)\ dt^2=\frac{1}{2}\int_0^{x^2}f(u)\ du\\ \Rightarrow\displaystyle\left(\int_0^xtf(x^2-t^2)\ dt\right)'=xf(x) 0xtf(x2t2) dt=210xf(x2t2) dt2=210x2f(u) du(0xtf(x2t2) dt)=xf(x)
==【例题14】==设 α > 0 \alpha>0 α>0,讨论 ∫ 0 1 ln ⁡ x x α \displaystyle\int_0^1\frac{\ln x}{x^\alpha} 01xαlnx的敛散性

**【分析】**比较审敛法
lim ⁡ x → 0 + ln ⁡ x x α 1 x α = lim ⁡ x → 0 + ln ⁡ x = ∞ > 1 ⇒ ln ⁡ x x α > 1 x α \lim_{x\rightarrow0^+}{\frac{\displaystyle\frac{\ln x}{x^\alpha}}{\displaystyle\frac{1}{x^\alpha}}}=\lim_{x\rightarrow0^+}{\ln x}=\infty>1\\ \Rightarrow\frac{\ln x}{x^\alpha}>\frac{1}{x^\alpha}\\ x0+limxα1xαlnx=x0+limlnx=>1xαlnx>xα1
大的收敛,小的收敛

小的发散,大的发散

所以当 α ≥ 1 \alpha\geq1 α1,小的发散,所以大的即 ∫ 0 1 ln ⁡ x x α \displaystyle\int_0^1\frac{\ln x}{x^\alpha} 01xαlnx发散

0 < α < 1 0<\alpha<1 0<α<1,取 ε > 0 \varepsilon>0 ε>0,使 α + ε < 1 \alpha+\varepsilon<1 α+ε<1
lim ⁡ x → 0 + ln ⁡ x x α 1 x α + ε = lim ⁡ x → 0 + x ε ln ⁡ x = 0 < 1 ⇒ ln ⁡ x x α < 1 x α + ε \lim_{x\rightarrow0^+}{\displaystyle\frac{\displaystyle\frac{\ln x}{x^\alpha}}{\displaystyle\frac{1}{x^{\alpha+\varepsilon}}}}=\lim_{x\rightarrow0^+}{x^\varepsilon\ln x}=0<1\\ \Rightarrow\frac{\ln x}{x^\alpha}<\frac{1}{x^{\alpha+\varepsilon}} x0+limxα+ε1xαlnx=x0+limxεlnx=0<1xαlnx<xα+ε1
所以 ln ⁡ x x α \displaystyle\frac{\ln x}{x^\alpha} xαlnx是收敛的

**【例题15】**设 f ( x ) , g ( x ) f(x),g(x) f(x),g(x)二阶可导, g ′ ′ ( x ) < 0 g''(x)<0 g(x)<0,若 g ( x 0 ) = a g(x_0)=a g(x0)=a g ( x ) g(x) g(x)的极值,则 f [ g ( x ) ] f[g(x)] f[g(x)] x ) x_) x)取极大值的一个充分条件是()

A、 f ′ ( a ) < 0 f'(a)<0 f(a)<0

B、 f ′ ( a ) > 0 f'(a)>0 f(a)>0

C、 f ′ ′ ( a ) < 0 f''(a)<0 f(a)<0

D、 f ′ ′ ( a ) > 0 f''(a)>0 f(a)>0

【分析】

g ( x 0 ) = a g(x_0)=a g(x0)=a是极值,所以 g ′ ( x 0 ) = 0 g'(x_0)=0 g(x0)=0(费马定理)

由于 f [ g ( x ) ] f[g(x)] f[g(x)] x 0 x_0 x0处取极大值,则其一阶导数等于0,二阶导数小于0,根据复合求导:

{ f [ g ( x ) ] } ′ = f ′ ( g ( x ) ) g ′ ( x ) = 0 \{f[g(x)]\}'=f'(g(x))g'(x)=0 { f[g(x)]}=f(g(x))g(x)=0

{ f [ g ( x ) ] } ′ ′ = f ′ ′ ( g ( x ) ) g ′ 2 ( x ) + f ′ ( g ( x ) ) g ′ ′ ( x ) = f ′ ( g ( x ) ) g ′ ′ ( x ) < 0 ⇒ f ′ ( a ) > 0 \{f[g(x)]\}''=f''(g(x))g'^2(x)+f'(g(x))g''(x)=f'(g(x))g''(x)<0\Rightarrow f'(a)>0 { f[g(x)]}=f(g(x))g2(x)+f(g(x))g(x)=f(g(x))g

  • 9
    点赞
  • 57
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
考研数学三高分笔记pdf是一份非常有价值的学习资料,它主要针对考研数学这一门学科进行了深入的讲解和总结。该笔记的特点是内容系统全面,涵盖了考研数学各个方面的重点和难点,对于学习者来说是一份非常实用的复习资料。 首先,考研数学三高分笔记pdf内容系统全面。它将考研数学的各个知识点有机地组合在一起,从基础知识到高级应用都有详细的讲解。无论是线性代数、概率论与数理统计还是高等数学,都能在笔记中找到相应的内容。这使得学习者可以系统地复习整个考研数学知识体系,对各个知识点有一个全面的理解。 其次,该笔记还针对考研数学的重点和难点进行了详细的总结和讲解。在考研数学中,有一些知识点往往是难以理解和掌握的,但是对于考研数学的高分是至关重要的。考研数学三高分笔记pdf就针对这些难点进行了深入的解析,通过讲解清晰的例题和技巧,帮助学习者更好地理解和掌握这些知识点。 最后,该笔记以pdf格式呈现,方便学习者进行随时随地的学习。学习者可以将笔记下载到电脑、手机等设备中,无论在家还是在外,都能随时打开进行学习。这种灵活性使学习者能更好地安排时间和地点,提高学习的效率。 综上所述,考研数学三高分笔记pdf是一份非常有价值的学习资料。它不仅内容系统全面,还针对考研数学的重点和难点进行了详细的解析,通过pdf格式的呈现,方便学习者进行随时随地的学习。对于准备参加考研数学的学习者来说,这份笔记是一个不可多得的宝藏。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值