1.导数和微分
求导
使用导数的定义
f ′ ( x ) = lim x → x 0 f ( x ) − f ( x 0 ) x − x 0 或者 f ′ ( x ) = lim Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x f'(x)=\lim_{x \to{x0}}\frac{f(x)-f(x0)}{x-x0} 或者f'(x)=\lim_{Δx \to0}\frac{f(x0+Δx)-f(x0)}{Δx} f′(x)=limx→x0x−x0f(x)−f(x0)或者f′(x)=limΔx→0Δxf(x0+Δx)−f(x0)
结论:
(1) lim x → x 0 f ( x ) + B x − x 0 = A 且 f ( x ) 在 x 0 处连续 , 可以推导出 lim x → x 0 f ( x ) = − B 和 f ′ ( x 0 ) = A \lim_{x \to{x0}}\frac{f(x)+B}{x-x0}=A且f(x)在x0处连续,可以推导出\lim_{x \to{x0}}f(x)=-B和f'(x0)=A limx→x0x−x0f(x)+B=A且f(x)在x0处连续,可以推导出limx→x0f(x)=−B和f′(x0)=A
( 2 ) f ( x ) = ∣ x − x 0 ∣ g ( x ) 且 g ( x ) 在 x 0 处连续 , f ′ ( x ) 在 x 0 处可到 ⇋ g ( x 0 ) = 0 (2)f(x)=|x-x0|g(x)且g(x)在x0处连续,f'(x)在x0处可到⇋g(x0)=0 (2)f(x)=∣x−x0∣g(x)且g(x)在x0处连续,f′(x)在x0处可到⇋g(x0)=0
注意点:
f(x)在x=a的某个邻域有定义,求f(x)在x=a处可导的充要条件
是什么?
(1) lim x → + ∞ x [ f ( a + 1 x ) − f ( a ) ] 存在 \lim_{x \to+\infty}x[f(a+\frac{1}{x})-f(a)]存在 limx→+∞x[f(a+x1)−f(a)]存在 不能推出:只能说明存在右导数
(2) lim n → ∞ x [ f ( a + 1 n ) − f ( a ) ] 存在 \lim_{n \to\infty}x[f(a+\frac{1}{n})-f(a)]存在 limn→∞x[f(a+n1)−f(a)]存在 不能推出:n代表的是数列极限,也就是说n是正数,还是只能说明有右导数
(3) lim x → 0 f ( a + x ) − f ( a − x ) 2 x 存在 \lim_{x \to0}\frac{f(a+x)-f(a-x)}{2x}存在 limx→02xf(a+x)−f(a−x)存在 不能推出:虽然可以凑成两个导数定义的形式,但是可能a点是个分段点,也就不连续,更不可能有导数。
微分
现阶段可认为dx=Δx。dy=f'(x)dx
1.微分定义:Δy=AΔx+o(Δx),其中A与Δx无关
dy=AΔx
Δy-dy是Δx的高阶无穷小
(1)f’(x)>0且f’'(x)>0情况。此时Δy-dy>0
(2)f’(x)>0且f’'(x)<0情况。此时Δy-dy<0
可导⇋可微
2.导数和微分计算
导数公式
(1) ( C ) ′ = 0 (C)'=0 (C)′=0
(2) ( x a ) ′ = a x a − 1 (x^a)'=ax^{a-1} (xa)′=axa−1
(3) ( a x ) ′ = a x l n a (a^x)'=a^xlna (ax)′=axlna
(4) ( e x ) ′ = e X (e^x)'=e^X (ex)′=eX
(5)(logax) ′ = 1 x l n a '=\frac{1}{xlna} ′=xlna1
(6) ( l n ∣ x ∣ ) ′ = 1 x (ln|x|)'=\frac{1}{x}