考研数学二复习笔记-高等数学-第二章 一元函数微分学

该博客围绕高等数学中导数和微分展开。介绍了求导和微分的定义、计算方法,包括导数公式、长多项式求导等多种求导方式,还阐述了中值定理、不等式与零点问题,以及导数在极值、拐点、渐近线、弧微分和曲率等方面的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.导数和微分

求导

使用导数的定义
f ′ ( x ) = lim ⁡ x → x 0 f ( x ) − f ( x 0 ) x − x 0 或者 f ′ ( x ) = lim ⁡ Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x f'(x)=\lim_{x \to{x0}}\frac{f(x)-f(x0)}{x-x0} 或者f'(x)=\lim_{Δx \to0}\frac{f(x0+Δx)-f(x0)}{Δx} f(x)=limxx0xx0f(x)f(x0)或者f(x)=limΔx0Δxf(x0+Δx)f(x0)

结论:
(1) lim ⁡ x → x 0 f ( x ) + B x − x 0 = A 且 f ( x ) 在 x 0 处连续 , 可以推导出 lim ⁡ x → x 0 f ( x ) = − B 和 f ′ ( x 0 ) = A \lim_{x \to{x0}}\frac{f(x)+B}{x-x0}=A且f(x)在x0处连续,可以推导出\lim_{x \to{x0}}f(x)=-B和f'(x0)=A limxx0xx0f(x)+B=Af(x)x0处连续,可以推导出limxx0f(x)=Bf(x0)=A
( 2 ) f ( x ) = ∣ x − x 0 ∣ g ( x ) 且 g ( x ) 在 x 0 处连续 , f ′ ( x ) 在 x 0 处可到 ⇋ g ( x 0 ) = 0 (2)f(x)=|x-x0|g(x)且g(x)在x0处连续,f'(x)在x0处可到⇋g(x0)=0 (2)f(x)=xx0∣g(x)g(x)x0处连续,f(x)x0处可到g(x0)=0

注意点:
f(x)在x=a的某个邻域有定义,求f(x)在x=a处可导的充要条件是什么?

(1) lim ⁡ x → + ∞ x [ f ( a + 1 x ) − f ( a ) ] 存在 \lim_{x \to+\infty}x[f(a+\frac{1}{x})-f(a)]存在 limx+x[f(a+x1)f(a)]存在 不能推出:只能说明存在右导数
(2) lim ⁡ n → ∞ x [ f ( a + 1 n ) − f ( a ) ] 存在 \lim_{n \to\infty}x[f(a+\frac{1}{n})-f(a)]存在 limnx[f(a+n1)f(a)]存在 不能推出:n代表的是数列极限,也就是说n是正数,还是只能说明有右导数
(3) lim ⁡ x → 0 f ( a + x ) − f ( a − x ) 2 x 存在 \lim_{x \to0}\frac{f(a+x)-f(a-x)}{2x}存在 limx02xf(a+x)f(ax)存在 不能推出:虽然可以凑成两个导数定义的形式,但是可能a点是个分段点,也就不连续,更不可能有导数。

微分

现阶段可认为dx=Δx。dy=f'(x)dx
1.微分定义:Δy=AΔx+o(Δx),其中A与Δx无关
dy=AΔx
Δy-dy是Δx的高阶无穷小
(1)f’(x)>0且f’'(x)>0情况。此时Δy-dy>0
在这里插入图片描述

(2)f’(x)>0且f’'(x)<0情况。此时Δy-dy<0
在这里插入图片描述
可导⇋可微

2.导数和微分计算

导数公式

(1) ( C ) ′ = 0 (C)'=0 (C)=0
(2) ( x a ) ′ = a x a − 1 (x^a)'=ax^{a-1} (xa)=axa1
(3) ( a x ) ′ = a x l n a (a^x)'=a^xlna (ax)=axlna
(4) ( e x ) ′ = e X (e^x)'=e^X (ex)=eX
(5)(logax) ′ = 1 x l n a '=\frac{1}{xlna} =xlna1
(6) ( l n ∣ x ∣ ) ′ = 1 x (ln|x|)'=\frac{1}{x}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mystic Musings

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值