考研数学笔记:曲率数学公式推导

本文深入探讨了曲线曲率的概念,曲率与密切圆的关系,以及二维平面上两种参数方程下的曲率计算公式推导。通过分析,揭示了曲率如何衡量曲线偏离直线的程度,并提供了曲率公式及其应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 曲线的曲率

  • 几何体的曲率对于不同的对象有不同的定义。首先来看最简单的平面曲线。
  • 首先把曲线分成无穷小的小段,每一段看作某个圆的一小段圆弧。这个圆叫做“密切圆”(Osculating Circle)。由于它与曲线只相交于极小的一段,又称为“接吻圆”(Kissing Circle)。这个圆的半径称为“曲率半径”。
  • “曲率”是一个向量,它从圆弧上的参考点指向密切圆圆心。密切圆曲率半径的倒数就是这个圆弧在这个点上“曲率”的大小。所以,曲线越接近直线,曲率半径就越大,在这一点上的曲率就越小。直线曲率出处为零。

2. 曲线的表示形式

二维平面上的曲线有两种参数化形式,如下所示:

  • 参数方程1
    在这里插入图片描述
  • 参数方程2
    在这里插入图片描述
    以上两种参数方程都可以唯一确定一条二维平面内的曲线。因此&
评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

容艾

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值