【读论文】稀疏特征

Pavement crack detection and recognition using the architecture of segNet

Abstract

  1. Crack detection is a typical semantic segmentation task; 语义分割问题
  2. We propose an encoder-decoder structural model with a fully convolutional neural network, namely, PCSN, by referring to SegNet. 提出PCSN,基于SegNet。
  3. A crack dataset of images containing complex crack textures is constructed by manual pixelwise annotation.

Introduction

  1. Pavement and bridge defects consist of internal invisible defects and surface visible defects. 包含内部不可见的裂痕以及表面可见的裂痕。
  2. Surface visible crack defects are a long-standing problem and affect public safety. 引发安全问题
  3. However, due to the complex road environment, it is difficult to detect pavement and bridge surface cracks using such a processing flow [6]. 道路复杂性,传统方法不可行。
  4. The process of detecting cracks from images can be seen as an object detection, classification and localization problem.
  5. Therefore, deep learning based model can be used to detect pavement and bridge surface crack defects. 考虑深度学习方法。
  6. Our main strategy, which is based on an analysis of previous research on crack inspection, is to improve the performance of pavement crack detection method by integrating the feature of low-resolution input sampling. 针对低分辨率的图片。
  7. 部分数据来源.

Related work

  1. To simplify the structure of crack detection models and to reduce the number of internal parameters, pixel-wise detection approaches, such as FCN and SegNet, are proposed by researchers due to the excellent advantages of simple structure and fewer weight parameters.

Pavement and bridge crack dataset construction

  1. 解释PCSN为什么需要非常多的数据(labeled images)。
  2. 如何获取images。
  3. images组成以及打标。
  4. images尺寸。
  5. 调整images的角度、亮度、对比度、色彩等参数,以扩充数据。(thereby enabling PCSN to learn a wider range of crack patterns. )
  6. 训练集、验证集、测试集的分配情况。

thereby enabling PCSN to learn a wider range of crack patterns.

  1. In this paper, the key point is how to define the issue of pavement and bridge crack that exists on concrete or asphalt pavement and bridge deck and how to adopt full advantages of CNN, FCN and SegNet. 如何识别混凝土或者柏油马路上面的crack。

Automatic Image Registration Through Image Segmentation and SIFT

内容概要:该题库专为研究生入学考试计算机组成原理科目设计,涵盖名校考研真题、经典教材课后习题、章节题库和模拟试题四大核心模块。名校考研真题精选多所知名高校的计算机组成原理科目及计算机联考真题,并提供详尽解析,帮助考生把握考研命题趋势与难度。经典教材课后习题包括白中英《计算机组成原理》(第5版)和唐朔飞《计算机组成原理》(第2版)的全部课后习题解答,这两部教材被众多名校列为考研指定参考书目。章节题库精选代表性考题,注重基础知识与重难点内容,帮助考生全面掌握考试大纲要求的知识点。模拟试题依据历年考研真题命题规律和热门考点,精心编制两套全真模拟试题,并附标准答案,帮助考生检验学习成果,评估应试能力。 适用人群:计划参加研究生入学考试并报考计算机组成原理科目的考生,尤其是需要系统复习和强化训练的学生。 使用场景及目标:①通过研名校考研真题,考生可以准确把握考研命题趋势与难度,有效评估复习成效;②通过经典教材课后习题的练习,考生可以巩固基础知识,掌握解题技巧;③通过章节题库的系统练习,考生可以全面掌握考试大纲要求的各个知识点,为备考打下坚实基础;④通过模拟试题的测试,考生可以检验学习成果,评估应试能力,为正式考试做好充分准备。 其他说明:该题库不仅提供详细的题目解析,还涵盖了计算机组成原理的各个方面,包括计算机系统概述、数据表示与运算、存储器分层、指令系统、中央处理器、总线系统和输入输出系统等。考生在使用过程中应结合理论学习与实践操作,注重理解与应用,以提高应试能力和专业知识水平。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值