【读论文】稀疏特征

Pavement crack detection and recognition using the architecture of segNet

Abstract

  1. Crack detection is a typical semantic segmentation task; 语义分割问题
  2. We propose an encoder-decoder structural model with a fully convolutional neural network, namely, PCSN, by referring to SegNet. 提出PCSN,基于SegNet。
  3. A crack dataset of images containing complex crack textures is constructed by manual pixelwise annotation.

Introduction

  1. Pavement and bridge defects consist of internal invisible defects and surface visible defects. 包含内部不可见的裂痕以及表面可见的裂痕。
  2. Surface visible crack defects are a long-standing problem and affect public safety. 引发安全问题
  3. However, due to the complex road environment, it is difficult to detect pavement and bridge surface cracks using such a processing flow [6]. 道路复杂性,传统方法不可行。
  4. The process of detecting cracks from images can be seen as an object detection, classification and localization problem.
  5. Therefore, deep learning based model can be used to detect pavement and bridge surface crack defects. 考虑深度学习方法。
  6. Our main strategy, which is based on an analysis of previous research on crack inspection, is to improve the performance of pavement crack detection method by integrating the feature of low-resolution input sampling. 针对低分辨率的图片。
  7. 部分数据来源.

Related work

  1. To simplify the structure of crack detection models and to reduce the number of internal parameters, pixel-wise detection approaches, such as FCN and SegNet, are proposed by researchers due to the excellent advantages of simple structure and fewer weight parameters.

Pavement and bridge crack dataset construction

  1. 解释PCSN为什么需要非常多的数据(labeled images)。
  2. 如何获取images。
  3. images组成以及打标。
  4. images尺寸。
  5. 调整images的角度、亮度、对比度、色彩等参数,以扩充数据。(thereby enabling PCSN to learn a wider range of crack patterns. )
  6. 训练集、验证集、测试集的分配情况。

thereby enabling PCSN to learn a wider range of crack patterns.

  1. In this paper, the key point is how to define the issue of pavement and bridge crack that exists on concrete or asphalt pavement and bridge deck and how to adopt full advantages of CNN, FCN and SegNet. 如何识别混凝土或者柏油马路上面的crack。

Automatic Image Registration Through Image Segmentation and SIFT

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值