【目标检测】anchor基础知识整理

目标检测算法一般可分为anchor-based、anchor-free、两者融合类,区别就在于有没有利用anchor提取候选目标框。下面我们来具体介绍。

1. Anchor是什么

目标检测是"在哪里有什么"的任务,在这个任务中,目标的类别不确定、数量不确定、位置不确定、尺度不确定,传统非深度学习方法如VJ和DPM,和早期深度学习方法如OverFeat,都要金字塔多尺度+遍历滑窗的方式,逐尺度逐位置判断"这个尺度的这个位置处有没有认识的目标",非常笨重耗时。

anchor的概念最早出现在FasterRCNN的论文中,首先预设一组不同尺度不同位置的固定参考框,覆盖几乎所有位置和尺度,每个参考框负责检测与其交并比大于阈值 (训练预设值,常用0.5或0.7) 的目标,anchor技术将问题转换为"这个固定参考框中有没有认识的目标,目标框偏离参考框多远",不再需要多尺度遍历滑窗,极大的提升了速度。同时anchor的存在,也解决不同物体的中心点落到一个grid cell中的问题。

2. 举个栗子🌰

目标检测最简单、最暴力的方法就是“定步长搜索法”。

基本思想

step1 按照网格的生成规律,计算所有生成框的四个点的坐标;
step2 对每个框,判断其中是否包含”猫";
step3 将包含猫的框的坐标返回,这时候你就得到了最终的结果。

在“网格生成“过程中,每个网格都会有一个自己的中心,每个小格子都可以抽象成为在自己的中心生成了一个指定大小为16个像素的矩形框,在这里,我们把这些中心称之为 “锚点”,把每个锚点处的框称之为 “锚框”

为了检测小猫,需要在每一个锚点生成一个小框;而为了检测大猫

### 目标检测入门教程:基础知识与学习资源 #### 什么是目标检测目标检测是一种计算机视觉技术,旨在识别图像或视频中的特定对象并标记其位置。它不仅涉及分类任务(即判断某个区域属于哪个类别),还涉及到定位任务(即找到该类别的边界框)。这一领域广泛应用于自动驾驶、安防监控、医疗影像分析等领域。 #### 基本概念 目标检测的核心在于两个方面:**分类** 和 **定位**。以下是几个重要术语: - **边界框 (Bounding Box)**:用来表示目标所在位置的矩形框[^2]。 - **IoU (Intersection over Union)**:衡量预测框与真实框重叠程度的一个指标,通常用于评估模型性能。 - **Anchor Boxes**:预先设定的一组候选框,在一些现代算法中被用来辅助生成更精确的预测结果。 #### 主要方法分类 根据实现方式的不同,目标检测可以分为以下几类: 1. #### 特征提取法 利用传统机器学习手段提取手工设计特征来进行物体识别和定位[^1]。 2. #### 学习-Based 方法 结合统计学原理构建概率分布模型完成相应功能。 3. #### 滤波器方法 使用卡尔曼滤波或其他贝叶斯估计框架追踪动态场景下的运动目标。 4. #### 深度学习驱动的方法 随着计算能力提升以及大数据集公开可用,基于深度神经网络特别是卷积神经网络(CNNs) 的解决方案逐渐成为主流趋势。这类方案能够自动从原始像素级输入学到高层次抽象表征从而显著改善效果[^3]。 ##### 迁移学习的作用 对于初学者而言,理解迁移学习的概念非常重要。通过利用已有的大规模预训练模型权重作为新项目的起点,可以在减少所需样本数量的同时加快收敛速度并获得更好的泛化表现[^4]。 --- ### 推荐的学习资料 为了更好地掌握上述理论知识及其实践应用技巧,这里整理了一些优质参考资料供参考: 1. 官方文档及社区支持 - 如 OpenCV 提供详尽的技术指南帮助开发者快速上手各种经典案例研究. 2. 在线课程平台上的专项系列讲座 – 包括但不限于Coursera,Udacity等知名教育机构开设的相关主题微学位计划或者独立章节讲解. 3. 论文阅读习惯养成–定期浏览最新科研成果分享网站Arxiv.org获取前沿进展资讯;同时关注顶级会议 CVPR,ECCV发表论文汇总链接地址以便及时跟进热点方向发展态势. 4. 开源项目实战演练机会发掘–积极参与GitHub平台上活跃维护状态良好的开源工程贡献代码片段修改意见交流心得体验整个开发流程闭环操作过程. ```python import cv2 from matplotlib import pyplot as plt # 加载测试图片 image = cv2.imread('test_image.jpg') # 转换颜色空间至RGB模式便于显示查看 rgb_img = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) plt.imshow(rgb_img) plt.show() ``` 以上是一个简单的Python脚本示例,展示了如何读取本地存储文件夹内的JPEG格式静态图档内容并通过Matplotlib库渲染呈现出来给用户观察确认无误后再进一步处理分析。
评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值