智能配送系统的运筹优化实战

本文介绍了美团智能配送系统如何利用运筹优化技术在区域规划、骑手排班和路径规划等业务场景中提高效率。通过智能区域规划减少骑手无效跑动,优化骑手单均行驶距离;智能骑手排班则根据订单峰谷效应,按组排班以满足运力需求;骑手路径规划采用启发式定向搜索算法,确保路径优化效果稳定且快速。此外,订单智能调度考虑长周期优化,处理大规模订单与骑手匹配问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

深入各个产业已经成为互联网目前的主攻方向,线上和线下存在大量复杂的业务约束和多种多样的决策变量,为运筹优化技术提供了用武之地。作为美团智能配送系统最核心的技术之一,运筹优化是如何在美团各种业务场景中进行落地的呢?本文根据美团配送技术团队资深算法专家王圣尧在2019年ArchSummit全球架构师峰会北京站上的演讲内容整理而成。

美团智能配送系统架构

美团配送业务场景复杂,单量规模大。下图这组数字是2019年5月美团配送品牌发布时的数据。

更直观的规模数字,可能是美团每年给骑手支付的工资,目前已经达到几百亿这个量级。所以,在如此大规模的业务场景下,配送智能化就变得非常重要,而智能配送的核心就是做资源的优化配置。

外卖配送是一个典型的O2O场景。既有线上的业务,也有线下的复杂运营。配送连接订单需求和运力供给。为了达到需求和供给的平衡,不仅要在线下运营商家、运营骑手,还要在线上将这些需求和运力供给做合理的配置,其目的是提高整体的效率。只有将配送效率最大化,才能带来良好的顾客体验,实现较低的配送成本。而做资源优化配置的过程,实际上是有分层的。根据我们的理解,可以分为三层:

  1. 基础层是结构优化,它直接决定了配送系统效率的上限。这种基础结构的优化,周期比较长,频率比较低,包括配送网络规划、运力结构规划等等。
  2. 中间层是市场调节,相对来说是中短期的,主要通过定价或者营销手段,使供需达到一个相对理想的平衡状态。
  3. 再上层是实时匹配,通过调度做实时的资源最优匹配。 实时匹配的频率是最高的,决策的周期也最短。

根据智能配送的这三层体系,配送算法团队也针对性地进行了运作。如上图所示,右边三个子系统分别对应这三层体系,最底层是规划系统,中间层是定价系统,最上层是调度系统。同样非常重要的还包括图中另外四个子系统,在配送过程中做精准的数据采集、感知、预估,为优化决策提供准确的参数输入,包括机器学习系统、IoT 和感知系统、LBS系统,这都是配送系统中非常重要的环节,涉及大量复杂的机器学习问题。

而运筹优化则是调度系统、定价系统、规划系统的核心技术。接下来,我们分享几个典型的运筹优化案例。

实战业务项目

智能区域规划

为了帮助大家快速理解配送业务的基本背景,这里首先分享智能区域规划项目中经常遇到的问题及其解决方案。

配送连接的是商家、顾客、骑手三方,配送网络决定了这三方的连接关系。当用户打开App,查看哪些商家可以点餐,这由商家配送范围决定。​每个商家的配送范围不一样,看似是商家粒度的决策,但实际上直接影响每个C端用户得到的商流供给,这本身也是一个资源分配或者资源抢夺问题。商家配送范围智能化也是一个组合优化问题,但是我们这里讲的是商家和骑手的连接关系。

用户在美团点外卖,为他服务的骑手是谁呢?又是怎么确定的呢?这些是由配送区域边界来决定的。配送区域边界指的是一些商家集合所对应的范围。为什么要划分区域边界呢?从优化的角度来讲,对于一个确定问题来说,约束条件越少,目标函数值更优的可能性就越大。做优化的同学肯定都不喜欢约束条件,但是配送区域边界实际上就是给配送系统强加的约束。

在传统物流中,影响末端配送效率最关键的点,是配送员对他所负责区域的熟悉程度。这也是为什么在传统物流领域,配送站或配送员,都会固定负责某几个小区的原因之一。因为越熟悉,配送效率就会越高。

即时配送场景也类似,每个骑手需要尽量固定地去熟悉一片商家或者配送区域。同时,对于管理而言,站点的管理范围也比较明确。另外,如果有新商家上线,也很容易确定由哪个配送站来提供服务。所以,这个问题有很多运营管理的诉求在其中。

内容概要:本文详细分析了全球及中国财富管理市场的发展现状与未来趋势。全球财富管理市场起源于欧洲、发展于美国,美国财富管理市场经过百年发展,形成了以商业银行、综合财富管理平台和投资服务平台为代表的三类财富管理体系。中国财富管理市场正处于快速发展期,居民财富快速增长并向金融资产倾斜,资管新规引导市场健康发展。文中还探讨了中国财富管理市场的竞争格局,包括私人银行、银行理财、公募基金、券商资管、信托、第三方财富管理机构和互联网财富管理平台的发展情况。此外,公募基金投顾试点成为财富管理市场转型的重要探索,买方投顾模式逐步取代卖方投顾模式,AI赋能投顾业务,为行业发展带来新机遇。 适合人群:对财富管理行业感兴趣的投资者、金融从业者及研究机构。 使用场景及目标:①了解全球及中国财富管理市场的发展历程与现状;②掌握中国财富管理市场竞争格局及各机构的发展特点;③探索公募基金投顾试点对财富管理市场的转型意义及AI赋能投顾业务的应用前景。 阅读建议:本文内容详实,涵盖了财富管理市场的多个方面,建议读者重点关注中国财富管理市场的现状与发展趋势,特别是私人银行、银行理财、公募基金、券商资管等机构的具体发展情况,以及公募基金投顾试点和AI赋能投顾业务的创新模式。
6.0版更新说明: 1.根据2024年鉴整理,数据更新至2023年 2.新增指标,当前214个指标 5.0版更新说明: 数据更新至2022年 4.2版更新说明: 1.更新2021年部分指标数据 4.0版更新说明: 1.数据更新至2021年 2.调整部分旧指标 3.新增指标,当前190个指标 3.0版更新说明: 1.数据更新至2020年 2.调整部分指标,当前174个指标 2.4版更新说明: 1.更新部分缺失值 2.将数据转为平衡面板 3.填补升级。内含原始版本、线性插值、ARIMA填补三个版本数据 一、数据介绍 数据名称:中国城市数据库 数据来源:中国城市统计年鉴1991-2024年、地方统计局 数据年份:1990-2023年 数据范围:300个地级市(包括直辖市) 样本数量:平衡面板10200条(300*34=10200) 更新时间:2025年2月,当前最新6.0版 二、整理方法 第一,识别年鉴。利用NLP算法识别《中国城市统计年鉴》,并转为面板数据 第二,完善数据。对比主流数据库、地方统计局,进一步完善城市数据 第三,统一地区。匹配民政部编码,统一使用2019年编码和地区名称 第四,统一单位。对不同单位的情况,进行单位换算 第五,人工验证。得到所有指标的面板数据,并人工抽样验证 第六,平衡面板。将非平衡面板转为平衡面板数据 第七,线性插值。利用线性趋势对中间缺失进行填充,得到线性插值版 第八,ARIMA填补。利用时间趋势,对剩余缺失进行预测,得到ARIMA填补版 最终,保留原始版本、线性插值版、ARIMA填补版
内容概要:本文详细介绍了如何在HarmonyOS开发中使用Tabs组件构建底部页签。首先,文章强调了底部页签在提升用户体验和操作便捷性方面的重要性,随后介绍了Tabs组件的基本结构,包括TabBar和TabContent。接着,文章逐步引导读者搭建开发环境,包括安装DevEco Studio和配置项目。在此基础上,文章展示了Tabs组件的基础用法,如简单示例和组件结构解析。接下来,文章深入探讨了属性设置,如导航位置、滑动功能、动画时长等,以实现个性化定制。此外,文章还介绍了高级技巧,如滚动导航栏和自定义导航栏的实现方法。最后,通过一个电商应用的实际案例,展示了如何在实际项目中应用Tabs组件,以及开发过程中需要注意的事项和常见问题的解决方法。 适合人群:具有一定HarmonyOS开发基础的研发人员,尤其是希望提升用户交互体验的应用开发者。 使用场景及目标:①了解如何使用Tabs组件构建美观且实用的底部页签;②掌握底部页签的属性设置和高级技巧,如滚动导航栏和自定义导航栏;③解决开发过程中遇到的兼容性、布局适配和内存优化等问题。 其他说明:本文不仅提供了详细的代码示例和技术指导,还鼓励读者在实际项目中应用所学知识,不断探索HarmonyOS开发的更多可能性。通过学习本文,开发者可以更好地理解HarmonyOS开发的特点和优势,为用户打造更加出色的交互体验。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小菘蓝

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值