智能配送系统的运筹优化实战

本文介绍了美团智能配送系统如何利用运筹优化技术在区域规划、骑手排班和路径规划等业务场景中提高效率。通过智能区域规划减少骑手无效跑动,优化骑手单均行驶距离;智能骑手排班则根据订单峰谷效应,按组排班以满足运力需求;骑手路径规划采用启发式定向搜索算法,确保路径优化效果稳定且快速。此外,订单智能调度考虑长周期优化,处理大规模订单与骑手匹配问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

深入各个产业已经成为互联网目前的主攻方向,线上和线下存在大量复杂的业务约束和多种多样的决策变量,为运筹优化技术提供了用武之地。作为美团智能配送系统最核心的技术之一,运筹优化是如何在美团各种业务场景中进行落地的呢?本文根据美团配送技术团队资深算法专家王圣尧在2019年ArchSummit全球架构师峰会北京站上的演讲内容整理而成。

美团智能配送系统架构

美团配送业务场景复杂,单量规模大。下图这组数字是2019年5月美团配送品牌发布时的数据。

更直观的规模数字,可能是美团每年给骑手支付的工资,目前已经达到几百亿这个量级。所以,在如此大规模的业务场景下,配送智能化就变得非常重要,而智能配送的核心就是做资源的优化配置。

外卖配送是一个典型的O2O场景。既有线上的业务,也有线下的复杂运营。配送连接订单需求和运力供给。为了达到需求和供给的平衡,不仅要在线下运营商家、运营骑手,还要在线上将这些需求和运力供给做合理的配置,其目的是提高整体的效率。只有将配送效率最大化,才能带来良好的顾客体验,实现较低的配送成本。而做资源优化配置的过程,实际上是有分层的。根据我们的理解,可以分为三层:

  1. 基础层是结构优化,它直接决定了配送系统效率的上限。这种基础结构的优化,周期比较长,频率比较低,包括配送网络规划、运力结构规划等等。
  2. 中间层是市场调节,相对来说是中短期的,主要通过定价或者营销手段,使供需达到一个相对理想的平衡状态。
  3. 再上层是实时匹配,通过调度做实时的资源最优匹配。 实时匹配的频率是最高的,决策的周期也最短。

根据智能配送的这三层体系,配送算法团队也针对性地进行了运作。如上图所示,右边三个子系统分别对应这三层体系,最底层是规划系统,中间层是定价系统,最上层是调度系统。同样非常重要的还包括图中另外四个子系统,在配送过程中做精准的数据采集、感知、预估,为优化决策提供准确的参数输入,包括机器学习系统、IoT 和感知系统、LBS系统,这都是配送系统中非常重要的环节,涉及大量复杂的机器学习问题。

而运筹优化则是调度系统、定价系统、规划系统的核心技术。接下来,我们分享几个典型的运筹优化案例。

实战业务项目

智能区域规划

为了帮助大家快速理解配送业务的基本背景,这里首先分享智能区域规划项目中经常遇到的问题及其解决方案。

配送连接的是商家、顾客、骑手三方,配送网络决定了这三方的连接关系。当用户打开App,查看哪些商家可以点餐,这由商家配送范围决定。​每个商家的配送范围不一样,看似是商家粒度的决策,但实际上直接影响每个C端用户得到的商流供给,这本身也是一个资源分配或者资源抢夺问题。商家配送范围智能化也是一个组合优化问题,但是我们这里讲的是商家和骑手的连接关系。

用户在美团点外卖,为他服务的骑手是谁呢?又是怎么确定的呢?这些是由配送区域边界来决定的。配送区域边界指的是一些商家集合所对应的范围。为什么要划分区域边界呢?从优化的角度来讲,对于一个确定问题来说,约束条件越少,目标函数值更优的可能性就越大。做优化的同学肯定都不喜欢约束条件,但是配送区域边界实际上就是给配送系统强加的约束。

在传统物流中,影响末端配送效率最关键的点,是配送员对他所负责区域的熟悉程度。这也是为什么在传统物流领域,配送站或配送员,都会固定负责某几个小区的原因之一。因为越熟悉,配送效率就会越高。

即时配送场景也类似,每个骑手需要尽量固定地去熟悉一片商家或者配送区域。同时,对于管理而言,站点的管理范围也比较明确。另外,如果有新商家上线,也很容易确定由哪个配送站来提供服务。所以,这个问题有很多运营管理的诉求在其中。

内容概要:《2024年中国城市低空经济发展指数报告》由36氪研究院发布,指出低空经济作为新质生产力的代表,已成为中国经济新的增长点。报告从发展环境、资金投入、创新能力、基础支撑和发展成效五个维度构建了综合指数评价体系,评估了全国重点城市的低空经济发展状况。北京和深圳在总指数中名列前茅,分别以91.26和84.53的得分领先,展现出强大的资金投入、创新能力和基础支撑。低空经济主要涉及无人机、eVTOL(电动垂直起降飞行器)和直升机等产品,广泛应用于农业、物流、交通、应急救援等领域。政策支持、市场需求和技术进步共同推动了低空经济的快速发展,预计到2026年市场规模将突破万亿元。 适用人群:对低空经济发展感兴趣的政策制定者、投资者、企业和研究人员。 使用场景及目标:①了解低空经济的定义、分类和发展驱动力;②掌握低空经济的主要应用场景和市场规模预测;③评估各城市在低空经济发展中的表现和潜力;④为政策制定、投资决策和企业发展提供参考依据。 其他说明:报告强调了政策监管、产业生态建设和区域融合错位的重要性,提出了加强法律法规建设、人才储备和基础设施建设等建议。低空经济正加速向网络化、智能化、规模化和集聚化方向发展,各地应找准自身比较优势,实现差异化发展。
数据集一个高质量的医学图像数据集,专门用于脑肿瘤的检测和分类研究以下是关于这个数据集的详细介绍:该数据集包含5249张脑部MRI图像,分为训练集和验证集。每张图像都标注了边界框(Bounding Boxes),并按照脑肿瘤的类型分为四个类别:胶质瘤(Glioma)、脑膜瘤(Meningioma)、无肿瘤(No Tumor)和垂体瘤(Pituitary)。这些图像涵盖了不同的MRI扫描角度,包括矢状面、轴面和冠状面,能够全面覆盖脑部解剖结构,为模型训练提供了丰富多样的数据基础。高质量标注:边界框是通过LabelImg工具手动标注的,标注过程严谨,确保了标注的准确性和可靠性。多角度覆盖:图像从不同的MRI扫描角度拍摄,包括矢状面、轴面和冠状面,能够全面覆盖脑部解剖结构。数据清洗与筛选:数据集在创建过程中经过了彻底的清洗,去除了噪声、错误标注和质量不佳的图像,保证了数据的高质量。该数据集非常适合用于训练和验证深度学习模型,以实现脑肿瘤的检测和分类。它为开发医学图像处理中的计算机视觉应用提供了坚实的基础,能够帮助研究人员和开发人员构建更准确、更可靠的脑肿瘤诊断系统。这个数据集为脑肿瘤检测和分类的研究提供了宝贵的资源,能够帮助研究人员开发出更准确、更高效的诊断工具,从而为脑肿瘤患者的早期诊断和治疗规划提供支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小菘蓝

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值