【运筹】运筹优化实践

文章探讨了外卖平台如何通过智能区域规划优化商家配送范围和骑手商圈分配,以提高配送效率。同时,介绍了骑手排班的优化目标和约束条件,以及采用启发式算法解决排班问题。此外,路径规划作为关键模块,利用定向搜索和定制化搜索策略确保取送顺序的时效性。
摘要由CSDN通过智能技术生成

http://www.taodudu.cc/news/show-4866522.html

智能区域规划

背景

确定商家的配送范围,确定骑手(专送)所属商圈的范围,提高配送效率。
合理的商圈划分需要解决的问题主要有:
· 区域商家不集中
· 区域形状不规则
· 区域单量少
在这里插入图片描述

优化目标

业务目标:单均行驶距离
优化指标:商家聚合度、订单的聚合度(合单率)、订单重心和商家重心的偏离程度

思路:思考区域规划主要影响的是什么、大量的统计分析

约束

· 单量上下界
· 区域无交集
· AOI无遗漏
· 区域边界沿路网 ( 为了有新商家入驻的时候比较容易划定区域)

整体方案

优化求解商家最优集合 -> 画区域边界 -> 仿真系统

智能骑手排班

背景

外卖场景峰谷效应明显,又需要根据骑手的个人需求来排班,站长人工排班是很困难的

优化目标

目标:最大化满足运力需求的时间单元数

怎样定义满足运力需求:将时间离散化到半小时粒度,人数归一化,算法分配每个班次的骑手比例,单量也归一化,每个时间单元的进单量除以每天峰值时间单元的单量。如果某个时间单元内人数比例大于单量比例,那么叫作运力得到满足
在这里插入图片描述

约束条件

问题涉及大量复杂的约束,如管理的诉求、骑手的体验等:
· 每个工作时段尽量连续
· 每个工作时段持续的时间不过短
· 不同工作时段之间休息的时间不过短
· …

解决方案

基于约束条件,根据启发式算法构造初始方案,再用局部搜索迭代优化。不保证最优解,满意解即可

骑手路径规划

背景

骑手身上多个单,如何选择最优的取送顺序
在这里插入图片描述
而且,系统派单、改派、时间预估,都依赖路径规划,所以对时效性要求也很高;都是核心模块,优化求解能力要求也很高

方案

· 为保证稳定性和时效性,只能使用启发式定向搜索,不能在算法中加随机扰动。
· 不能用普通迭代搜索,必须把这个问题结构特性挖掘出来,做基于知识的定制化搜索
· 将路径规划问题看作流水线调度问题,每个订单是job, 取/送是operation。任意两个任务点之间的通行时间,是序列相关的准备时间。承诺的送达时间,包括预订单和即时单,可以映射到流水线调度问题中的提前和拖期惩罚上。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值