http://www.taodudu.cc/news/show-4866522.html
智能区域规划
背景
确定商家的配送范围,确定骑手(专送)所属商圈的范围,提高配送效率。
合理的商圈划分需要解决的问题主要有:
· 区域商家不集中
· 区域形状不规则
· 区域单量少
优化目标
业务目标:单均行驶距离
优化指标:商家聚合度、订单的聚合度(合单率)、订单重心和商家重心的偏离程度
思路:思考区域规划主要影响的是什么、大量的统计分析
约束
· 单量上下界
· 区域无交集
· AOI无遗漏
· 区域边界沿路网 ( 为了有新商家入驻的时候比较容易划定区域)
整体方案
优化求解商家最优集合 -> 画区域边界 -> 仿真系统
智能骑手排班
背景
外卖场景峰谷效应明显,又需要根据骑手的个人需求来排班,站长人工排班是很困难的
优化目标
目标:最大化满足运力需求的时间单元数
怎样定义满足运力需求:将时间离散化到半小时粒度,人数归一化,算法分配每个班次的骑手比例,单量也归一化,每个时间单元的进单量除以每天峰值时间单元的单量。如果某个时间单元内人数比例大于单量比例,那么叫作运力得到满足
约束条件
问题涉及大量复杂的约束,如管理的诉求、骑手的体验等:
· 每个工作时段尽量连续
· 每个工作时段持续的时间不过短
· 不同工作时段之间休息的时间不过短
· …
解决方案
基于约束条件,根据启发式算法构造初始方案,再用局部搜索迭代优化。不保证最优解,满意解即可
骑手路径规划
背景
骑手身上多个单,如何选择最优的取送顺序
而且,系统派单、改派、时间预估,都依赖路径规划,所以对时效性要求也很高;都是核心模块,优化求解能力要求也很高
方案
· 为保证稳定性和时效性,只能使用启发式定向搜索,不能在算法中加随机扰动。
· 不能用普通迭代搜索,必须把这个问题结构特性挖掘出来,做基于知识的定制化搜索
· 将路径规划问题看作流水线调度问题,每个订单是job, 取/送是operation。任意两个任务点之间的通行时间,是序列相关的准备时间。承诺的送达时间,包括预订单和即时单,可以映射到流水线调度问题中的提前和拖期惩罚上。