两个开源AI应用让Claude 3.5 直接操作你的电脑;构建和部署多智能体系统课程;简化PDF文档管理并提供智能聊天功能

✨ 1: agent.exe

Agent.exe 是一个简洁的 Electron 应用,允许 Claude 3.5 直接控制你的电脑。

在这里插入图片描述

Agent.exe 是一个简单的Electron应用程序,旨在利用Claude 3.5 Sonnet的计算机使用能力,允许用户直接控制其本地计算机。该项目旨在提供一种轻量级的解决方案,与其默认提供的庞大项目相比,用户能够更方便地体验Claude的新功能。用户可以通过命令行运行该程序,该程序会直接通过用户的指令控制计算机。

Agent.exe为用户提供了一个有趣的方式来与AI互动,并利用其能力来简化和自动化日常计算机任务。

地址:https://github.com/corbt/agent.exe

✨ 2: open-interpreter

Open Interpreter 是一个开源工具,允许LLM在本地执行代码,支持多种编程语言。

在这里插入图片描述

Open Interpreter 是一个允许大型语言模型(LLMs)在本地运行代码(如 Python、JavaScript、Shell 等)的工具。用户可以通过终端中的类 ChatGPT 界面与 Open Interpreter 进行交互,这使得用户能够以自然语言命令来控制计算机的各种功能,包括编辑照片、绘图、控制浏览器进行研究以及清理和分析大型数据集等。

在执行代码之前,用户需要批准每个命令,从而在一定程度上确保安全性。

Open Interpreter 除了解决了 OpenAI 的 Code Interpreter 的一些限制(如无网络访问、文件大小和运行时间限制)外,还利用用户本地环境的灵活性,提供了更高效便捷的编程和计算方式。

地址:https://github.com/OpenInterpreter/open-interpreter

✨ 3: Practical Multi AI Agents and Advanced Use Cases with crewAI

该课程教授如何构建和部署多智能体系统,应用于项目规划、数据分析等实际场景。

在这里插入图片描述

《Practical Multi AI Agents and Advanced Use Cases with crewAI》是一门由João Moura教授的短期课程,旨在帮助初学者了解和构建多智能体系统,应用于行业中的实际案例。课程总时长为2小时43分钟,包含15节视频课程和7个代码示例。

在课程中,学员将学习如何构建可以在复杂工作流程中协作的智能代理,使用不同的模型和外部工具高效地处理特定任务。课程内容包括:

  1. 多智能体系统的基本构建模块:了解任务、代理和团队的概念,以及缓存、内存等工作原理。
  2. 系统集成:学习如何将多智能体应用与内部和外部系统集成。
  3. 复杂代理设置:如何连接多个代理,设定并行、顺序和混合的复杂工作流程。
  4. 性能评估与优化:通过人类反馈进行性能测试和优化,以提高代理的工作质量。
  5. 大规模内容创建:利用多种大语言模型(LLMs)处理不同任务。
  6. 项目启动与部署:从零开始创建项目并为部署做准备。

地址:https://www.deeplearning.ai/short-courses/practical-multi-ai-agents-and-advanced-use-cases-with-crewai/

✨ 4: Document-Buddy-App

Document Buddy App是一款基于Streamlit的应用,简化PDF文档管理并提供智能聊天功能。

在这里插入图片描述

Document Buddy App 是一款基于 Streamlit 的强大应用程序,旨在简化文档管理。用户可以上传 PDF 文档,生成高效检索的嵌入,借助智能聊天机器人界面与文档进行交互。

Document Buddy App 的设计使其在文档处理和信息检索方面都变得更加高效,适用于各类用户,包括学术研究人员、学生和企业团队。

地址:https://github.com/AIAnytime/Document-Buddy-App

✨ 5: CoI-Agent

CoI-Agent是一款利用大型语言模型推动新创意发展的研究工具,旨在革新研究方法。

在这里插入图片描述

CoI-Agent(Chain-of-Ideas Agent)是一个旨在支持创新研究和新创意开发的工具,利用大语言模型(LLM)技术,专注于促进思想的生成和组织。该系统能够帮助研究人员在特定主题上产生和迭代新想法,从而推动科研的进展。

地址:https://github.com/DAMO-NLP-SG/CoI-Agent



更多AI工具,参考国内AiBard123Github-AiBard123 公众号:每日AI新工具

### 如何部署Claude 3.5版本 #### 准备工作 为了成功部署Claude 3.5 Sonnet,需要准备相应的环境支持工具。确保服务器配置满足最低硬件需求,安装必要的软件依赖项[^2]。 #### 获取模型文件 访问官方发布的下载页面获取最新版的Claude 3.5 Sonnet模型文件。通常这些资源会通过安全链接提供给授权用户。完成注册登录后即可找到对应的下载选项[^1]。 #### 设置运行环境 创建一个新的虚拟环境来隔离项目所需的Python包其他库。这有助于避免与其他项目的冲突以及简化管理过程: ```bash python -m venv claude_env source claude_env/bin/activate # Linux/MacOS .\claude_env\Scripts\activate.bat # Windows ``` 接着按照官方文档指示安装特定版本的PyTorch及其他必需组件: ```bash pip install torch==指定版本 torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu ``` #### 导入与初始化 加载预训练好的Claude 3.5 Sonnet权重到内存中,对其进行适当配置以便后续调用。这部分操作可以通过编写简单的脚本来实现自动化处理: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name_or_path = "path_to_model" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) # 将模型设置为评估模式 model.eval() ``` #### 构建API接口 为了让外部应用能够方便地请求服务,建议搭建RESTful API作为中间层。可以利用Flask框架快速建立这样一个轻量级的服务端点: ```python from flask import Flask, request, jsonify app = Flask(__name__) @app.route('/predict', methods=['POST']) def predict(): input_text = request.json.get('text') inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**inputs) result = tokenizer.decode(outputs[0], skip_special_tokens=True) return jsonify({"response": result}) if __name__ == "__main__": app.run(host='0.0.0.0', port=8080) ``` #### 测试验证 启动上述编写的Web应用程序之后,就可以发送HTTP POST请求来进行初步的功能测试了。确认一切正常后再考虑将其投入生产环境中使用。 #### 生产化考量 对于实际应用场景而言,还需要关注性能优化、安全性加固等方面的工作。比如采用GPU加速推理速度;实施身份认证机制保护敏感数据传输等措施都是必不可少的环节之一[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

go2coding

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值