背景
之前安装paddlepaddle-gpu遇到各种问题,安装不成功,之前使用了wsl+docker的方式,可查看我之前博客:记录paddlepaddle-gpu安装,使用paddle-docker会导致我整个开发流程比较割裂,因此还是需要wsl中安装paddlepaddle-gpu,
cuda版本
- 强烈推荐cuda11.8,paddlepaddle对cuda版本要求及其严格,如12.1和12.0的差异都不能正常安装成功,如果需要同时使用pytorch和paddle,目前为止,只能安装cuda11.8:
安装
2.然后直接安装,安装教程就不赘述,一路下一步即可
3.下载对应版本的cudnn
https://developer.nvidia.com/rdp/cudnn-archive
4.拷贝
下面的路径自己修改即可,仅供演示
复制前要确保拷问文件夹权限(不然就算拷贝也会报错):
(1)M:\software\cuda\cudnn-windows-x86_64-8.9.7.29_cuda11-archive\bin 下的文件全部拷贝到 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\bin
(2)M:\software\cuda\cudnn-windows-x86_64-8.9.7.29_cuda11-archive\include 下的文件全部拷贝到 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\include
(3)M:\software\cuda\cudnn-windows-x86_64-8.9.7.29_cuda11-archive\lib\x64 下的文件全部拷贝到 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\lib\x64
ubuntu:https://blog.csdn.net/enjoyyl/article/details/134893210
sudo chmod 777 -R include/
sudo chmod 777 -R lib64/
cp -r /mnt/n/software/cuda/cudnn-linux-x86_64-8.9.7.29_cuda11-archive/include/cudnn*.h /usr/local/cuda-11.8/include/
cp -r /mnt/n/software/cuda/cudnn-linux-x86_64-8.9.7.29_cuda11-archive/lib/libcudnn* /usr/local/cuda-11.8/lib64/
sudo chmod a+r /usr/local/cuda-11.8/lib64/libcudnn*
sudo chmod a+r /usr/local/cuda-11.8/include/cudnn*.h
5.安装paddlepaddle-gpu
pip install paddlepaddle-gpu==2.6.1 -i https://pypi.tuna.tsinghua.edu.cn/simple
6.验证
备注:博客仅作为我个人文档记录,如觉得写的不好,还请谅解。
linux报错:
>>> import paddle
>>> paddle.utils.run_check()
Running verify PaddlePaddle program ...
I0528 18:27:59.434978 1489 program_interpreter.cc:212] New Executor is Running.
W0528 18:27:59.435155 1489 gpu_resources.cc:119] Please NOTE: device: 0, GPU Compute Capability: 8.9, Driver API Version: 12.3, Runtime API Version: 11.8
W0528 18:27:59.435673 1489 gpu_resources.cc:164] device: 0, cuDNN Version: 8.9.
W0528 18:27:59.669302 1489 dynamic_loader.cc:314] The third-party dynamic library (libcuda.so) that Paddle depends on is not configured correctly. (error code is libcuda.so: cannot open shared object file: No such file or directory)
Suggestions:
1. Check if the third-party dynamic library (e.g. CUDA, CUDNN) is installed correctly and its version is matched with paddlepaddle you installed.
2. Configure third-party dynamic library environment variables as follows:
- Linux: set LD_LIBRARY_PATH by `export LD_LIBRARY_PATH=...`
- Windows: set PATH by `set PATH=XXX;
--------------------------------------
C++ Traceback (most recent call last):
--------------------------------------
No stack trace in paddle, may be caused by external reasons.
----------------------
Error Message Summary:
----------------------
FatalError: `Segmentation fault` is detected by the operating system.
[TimeInfo: *** Aborted at 1716892079 (unix time) try "date -d @1716892079" if you are using GNU date ***]
[SignalInfo: *** SIGSEGV (@0x0) received by PID 1489 (TID 0x7f3411621740) from PID 0 ***]
解决:https://blog.csdn.net/weixin_45921929/article/details/128853445
(torch) dongyongfei786@DESKTOP-3QNKDLL:~$ sudo find /usr/ -name libcuda.so*
/usr/lib/wsl/drivers/nv_dispig.inf_amd64_8f4dab92e290c42d/libcuda.so.1.1
/usr/lib/wsl/lib/libcuda.so
/usr/lib/wsl/lib/libcuda.so.1
/usr/lib/wsl/lib/libcuda.so.1.1
/usr/local/cuda-11.6/targets/x86_64-linux/lib/stubs/libcuda.so
/usr/local/cuda-11.8/targets/x86_64-linux/lib/stubs/libcuda.so
/usr/local/cuda-11.3/targets/x86_64-linux/lib/stubs/libcuda.so
(torch) dongyongfei786@DESKTOP-3QNKDLL:~$ cd /usr/l
lib/ libexec/ local/
(torch) dongyongfei786@DESKTOP-3QNKDLL:~$ sudo ln -d /usr/local/cuda-11.8/targets/x86_64-linux/lib/stubs/libcuda.so /usr/lib/x86_64-linux-gnu/libcuda.so
(torch) dongyongfei786@DESKTOP-3QNKDLL:~$ python
Python 3.8.13 | packaged by conda-forge | (default, Mar 25 2022, 06:04:18)
[GCC 10.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import paddle
>>> paddle.utils.run_check()
Running verify PaddlePaddle program ...
I0528 19:49:38.749671 1566 program_interpreter.cc:212] New Executor is Running.
W0528 19:49:38.749820 1566 gpu_resources.cc:119] Please NOTE: device: 0, GPU Compute Capability: 8.9, Driver API Version: 12.3, Runtime API Version: 11.8
W0528 19:49:38.750424 1566 gpu_resources.cc:164] device: 0, cuDNN Version: 8.9.
I0528 19:49:41.227173 1566 interpreter_util.cc:624] Standalone Executor is Used.
PaddlePaddle works well on 1 GPU.
PaddlePaddle is installed successfully! Let's start deep learning with PaddlePaddle now.
>>>