paddlepaddle-gpu安装

本文详细描述了解决在Windows和Linux环境下安装PaddlePaddleGPU时遇到的问题,包括推荐使用CUDA11.8,提供详细的安装步骤,并针对Linux中出现的Segmentationfault错误给出了修复方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

背景

之前安装paddlepaddle-gpu遇到各种问题,安装不成功,之前使用了wsl+docker的方式,可查看我之前博客:记录paddlepaddle-gpu安装,使用paddle-docker会导致我整个开发流程比较割裂,因此还是需要wsl中安装paddlepaddle-gpu,

cuda版本

  • 强烈推荐cuda11.8,paddlepaddle对cuda版本要求及其严格,如12.1和12.0的差异都不能正常安装成功,如果需要同时使用pytorch和paddle,目前为止,只能安装cuda11.8:
  • 在这里插入图片描述
    在这里插入图片描述

安装

1.下载cuda11.8:
https://developer.nvidia.com/cuda-11-8-0-download-archive?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_local

2.然后直接安装,安装教程就不赘述,一路下一步即可

3.下载对应版本的cudnn
在这里插入图片描述
https://developer.nvidia.com/rdp/cudnn-archive

4.拷贝

下面的路径自己修改即可,仅供演示
复制前要确保拷问文件夹权限(不然就算拷贝也会报错):
在这里插入图片描述

(1)M:\software\cuda\cudnn-windows-x86_64-8.9.7.29_cuda11-archive\bin 下的文件全部拷贝到 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\bin
(2)M:\software\cuda\cudnn-windows-x86_64-8.9.7.29_cuda11-archive\include 下的文件全部拷贝到 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\include
(3)M:\software\cuda\cudnn-windows-x86_64-8.9.7.29_cuda11-archive\lib\x64 下的文件全部拷贝到 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\lib\x64

ubuntu:https://blog.csdn.net/enjoyyl/article/details/134893210

sudo chmod 777 -R include/
sudo chmod 777 -R lib64/

cp -r /mnt/n/software/cuda/cudnn-linux-x86_64-8.9.7.29_cuda11-archive/include/cudnn*.h /usr/local/cuda-11.8/include/

cp -r /mnt/n/software/cuda/cudnn-linux-x86_64-8.9.7.29_cuda11-archive/lib/libcudnn* /usr/local/cuda-11.8/lib64/
sudo chmod a+r /usr/local/cuda-11.8/lib64/libcudnn*
sudo chmod a+r /usr/local/cuda-11.8/include/cudnn*.h

5.安装paddlepaddle-gpu

https://www.paddlepaddle.org.cn/install/quick?docurl=/documentation/docs/zh/install/pip/windows-pip.html

pip install paddlepaddle-gpu==2.6.1 -i https://pypi.tuna.tsinghua.edu.cn/simple

6.验证

在这里插入图片描述

备注:博客仅作为我个人文档记录,如觉得写的不好,还请谅解。

linux报错:

>>> import paddle
>>> paddle.utils.run_check()
Running verify PaddlePaddle program ...
I0528 18:27:59.434978  1489 program_interpreter.cc:212] New Executor is Running.
W0528 18:27:59.435155  1489 gpu_resources.cc:119] Please NOTE: device: 0, GPU Compute Capability: 8.9, Driver API Version: 12.3, Runtime API Version: 11.8
W0528 18:27:59.435673  1489 gpu_resources.cc:164] device: 0, cuDNN Version: 8.9.
W0528 18:27:59.669302  1489 dynamic_loader.cc:314] The third-party dynamic library (libcuda.so) that Paddle depends on is not configured correctly. (error code is libcuda.so: cannot open shared object file: No such file or directory)
  Suggestions:
  1. Check if the third-party dynamic library (e.g. CUDA, CUDNN) is installed correctly and its version is matched with paddlepaddle you installed.
  2. Configure third-party dynamic library environment variables as follows:
  - Linux: set LD_LIBRARY_PATH by `export LD_LIBRARY_PATH=...`
  - Windows: set PATH by `set PATH=XXX;


--------------------------------------
C++ Traceback (most recent call last):
--------------------------------------
No stack trace in paddle, may be caused by external reasons.

----------------------
Error Message Summary:
----------------------
FatalError: `Segmentation fault` is detected by the operating system.
  [TimeInfo: *** Aborted at 1716892079 (unix time) try "date -d @1716892079" if you are using GNU date ***]
  [SignalInfo: *** SIGSEGV (@0x0) received by PID 1489 (TID 0x7f3411621740) from PID 0 ***]

解决:https://blog.csdn.net/weixin_45921929/article/details/128853445

(torch) dongyongfei786@DESKTOP-3QNKDLL:~$ sudo find /usr/ -name libcuda.so*
/usr/lib/wsl/drivers/nv_dispig.inf_amd64_8f4dab92e290c42d/libcuda.so.1.1
/usr/lib/wsl/lib/libcuda.so
/usr/lib/wsl/lib/libcuda.so.1
/usr/lib/wsl/lib/libcuda.so.1.1
/usr/local/cuda-11.6/targets/x86_64-linux/lib/stubs/libcuda.so
/usr/local/cuda-11.8/targets/x86_64-linux/lib/stubs/libcuda.so
/usr/local/cuda-11.3/targets/x86_64-linux/lib/stubs/libcuda.so
(torch) dongyongfei786@DESKTOP-3QNKDLL:~$ cd /usr/l
lib/     libexec/ local/
(torch) dongyongfei786@DESKTOP-3QNKDLL:~$ sudo ln -d /usr/local/cuda-11.8/targets/x86_64-linux/lib/stubs/libcuda.so /usr/lib/x86_64-linux-gnu/libcuda.so
(torch) dongyongfei786@DESKTOP-3QNKDLL:~$ python
Python 3.8.13 | packaged by conda-forge | (default, Mar 25 2022, 06:04:18)
[GCC 10.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import paddle
>>> paddle.utils.run_check()
Running verify PaddlePaddle program ...
I0528 19:49:38.749671  1566 program_interpreter.cc:212] New Executor is Running.
W0528 19:49:38.749820  1566 gpu_resources.cc:119] Please NOTE: device: 0, GPU Compute Capability: 8.9, Driver API Version: 12.3, Runtime API Version: 11.8
W0528 19:49:38.750424  1566 gpu_resources.cc:164] device: 0, cuDNN Version: 8.9.
I0528 19:49:41.227173  1566 interpreter_util.cc:624] Standalone Executor is Used.
PaddlePaddle works well on 1 GPU.
PaddlePaddle is installed successfully! Let's start deep learning with PaddlePaddle now.
>>>
<think>好的,用户想了解如何使用VCDMStudio进行批量标定。我需要先回顾一下已有的引用内容,特别是引用[2]中提到在CANape中使用vCDMStudio批量标定,但用户遇到了标定不成功的问题。同时引用[1]提到保存数据为par格式,以及通过Canape打开vCDM工具。引用[3]介绍了ETAS的INCA软件,但用户的问题是关于VCDMStudio的,所以重点在引用[1]和[2]。 首先,我需要整理VCDMStudio的基本操作步骤。根据引用[2],CANape的标定步骤可能包括连接ECU、加载工程、配置参数等。但用户的问题是批量标定不成功,可能的原因包括工程配置错误、参数未正确映射、访问权限问题或数据格式问题。 接下来,需要分步骤说明使用方法。可能包括准备工作,如确保ECU连接和文件准备;创建或加载工程;导入标定数据,如par或a2l文件;配置参数映射;设置批量任务,比如选择多个参数或使用脚本;执行标定并验证结果。同时,需要提到保存数据,如引用[1]中的保存为par格式,以及错误处理,比如检查访问权限和日志查看。 可能还需要结合引用[3]中提到的INCA软件功能,但这里应专注于VCDMStudio。此外,用户可能需要教程式的指导,所以步骤要详细但清晰,避免技术术语过多,同时涵盖常见问题解决方法,如权限问题和数据格式正确性。 最后,生成相关问题,可能涉及优化批量标定效率、处理通信错误、与INCA的区别以及参数文件管理。需要确保回答结构符合用户要求,使用中文,正确应用LaTeX格式,并添加引用标识。</think>以下是如何在CANape中使用vCDMStudio进行批量标定的分步指南: ### 一、前期准备 1. 确保ECU已通过CAN/LIN/FlexRay等总线与CANape建立物理连接[^2] 2. 准备标定数据文件: - 标定参数文件(.par)需包含完整的参数树结构[^1] - 验证A2L描述文件是否包含目标ECU的所有标定参数特征 ### 二、操作流程 **步骤1:工程配置** ```python # 示例工程配置伪代码 project = vCDMStudio.create_project() project.connect_ecu("ECU_Protocol_Config") # 选择匹配的通信协议 project.load_parameter_set("Calibration.par") # 加载参数集 ``` **步骤2:批量标定设置** 1. 在vCDM界面右击目标参数组 → 选择"Create Calibration Task" 2. 通过拖放操作将多个参数添加至批量任务窗口 3. 设置写入模式: - 顺序写入(默认) - 并行写入(需ECU支持多线程访问) **步骤3:执行标定** $$ \text{标定执行时间} = \frac{N \times T_{\text{write}}}{n_{\text{parallel}}} + T_{\text{overhead}} $$ 其中$N$为参数数量,$T_{\text{write}}$为单参数写入耗时,建议首次采用单步验证模式 ### 三、常见问题处理 | 故障现象 | 检查项 | 解决方案 | |---------|--------|----------| | 参数写入失败 | 访问权限验证 | 检查A2L文件中`MEASUREMENT`与`CHARACTERISTIC`定义 | | 部分参数未更新 | 存储类型验证 | 确认是否需执行"Write to Flash"操作 | | 通信超时 | 总线负载率检测 | 调整XCP_ON_CAN的传输模式(DMA/BLOCK) | ### 四、数据管理 1. 完成标定后通过`Calibration → Compare`进行参数校验 2. 使用`Save As`功能保存为工程模板(.vcm格式) 3. 导出标定报告:`Report Generator → Export to Excel`
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DYF-AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值