首先我们来看看每个的含义:
batchsize:中文翻译为批大小(批尺寸)。在深度学习中,一般采用SGD训练,即每次训练在训练集中取batchsize个样本训练;
iteration:中文翻译为迭代,1个iteration等于使用batchsize个样本训练一次;一个迭代 = 一个正向通过+一个反向通过;
epoch:迭代次数,1个epoch等于使用训练集中的全部样本训练一次;一个epoch = 所有训练样本的一个正向传递和一个反向传递
接着举个例之:
假设训练集有1000个样本,batchsize=10,那么:训练完整个样本集需要:100次iteration,1次epoch。
再如现在有1000个样本,batch_size为100,则iteration就是10,batch_size * iteration = 样本数量 100*10=1000,一个epoch为所有样本完成一次反向传播。