出行特征分析与挖掘思路

本文探讨了乘客出行行为特征的分析,包括时空特征、出行模式及动态变化,运用DBSCAN和k-means等聚类算法揭示乘客类别。同时,通过时间序列模型和回归预测方法预测短时客流量,为优化公交线路和服务策略提供依据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目的
1 分析乘客出行行为特征,了解乘客行为规律,帮助决策者改进服务策略和优化公交运行线路,满足乘客需求。
2 预测短时出行客流量。

乘客出行特征分析

1 从客流量角度分析乘客出行的时空特征。
可视化分析交通客流的时间特征和空间特征
时间聚类方法计算客流量
根据不同站点的客流特征,利用空间聚类的方法对地铁站点进行分类,分析城市功能分区和评价轨道交通基础设施的发展
分析客流特性,评价地铁网络运行时间的可靠性

2 从乘客出行特征出发,研究乘客出行模式类别及其动态变化特性。
DBSCAN算法挖掘智能卡乘客出行模式的相似性,划分乘客类别。
空间聚类识别通勤人员和 非通勤人员,在地图上可视化,城市人口分布。
识别乘客异质性,生成不同活动序列和人口统计属性的集群。
k-means算法对乘客一周的出行次数进行聚类,行为具有一定的稳定性
对乘客进行不同用户群体划分,分析时空流动模式,出行模式识别。

客流预测

参数模型 非参数模型
时间序列模型 回归预测模型

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值