1.导包
import numpy as np
import torch
from torch.utils import data
2.生成1000个数据
#生成数据
def synthetic_data(w,b,num_examples):
X=torch.normal(0,1,(num_examples,len(w)))
y=torch.matmul(X,w)+b
y+=torch.normal(0,0.01,y.shape)
return X,y.reshape((-1,1))
true_w=torch.tensor([2,-3.4])
true_b=4.2
features,labels=synthetic_data(true_w,true_b,1000)
3.写一个pytorch迭代器
def load_array(data_array,batch_size,is_train=True):
data_set=data.TensorDataset(*data_array)
return data.DataLoader(data_set,batch_size,shuffle=is_train)
4.使用迭代器取数据
batch_size=10
data_iter=load_array((features,labels),batch_size)
next(iter(data_iter))
5.导入线性回归模型
from torch import nn
net=nn.Sequential(nn.Linear(2,1))
6.设置权重正态分布参数
net[0].weight.data.normal_(0,0.01)
net[0].bias.data.fill_(0)
7.均方误差
loss=nn.MSELoss()
8.设置梯度下降方式
trainer=torch.optim.SGD(net.parameters(),lr=0.03)
9.训练
num_epoch=3
for epoch in range(num_epoch):
for X,y in data_iter:
l=loss(net(X),y)
trainer.zero_grad()
l.backward()
trainer.step()
l=loss(net(features),labels)
print(f'epoch {epoch+1},loss {l:f}')
10.真实值和预测值之间的误差
w=net[0].weight.data
b=net[0].bias.data
print(true_w-w.reshape(true_w.shape))
print(true_b-b)