min-cut max-flow

Table: Polynomial algorithms for the max flow problem

  No  Duo to    Year    Running Time;
1Ford & Fulkerson [1]1956O(nmU)O(nmU)
2Edmonds and Karp [2]1972O(nm2)O(nm2)
3Dinic [3]1970O(n2m)O(n2m)
4Karzanov [4]1974O(n3)O(n3)
5Cherkasky [5]1977O(n2m−−√)O(n2m)
6Malhotra, Kumar & Maheshwari [6]1977O(n3)O(n3)
7Galil [7]1980O(n(5/3)m(2/3))O(n(5/3)m(2/3))
8Galil & Naaman [8]1980O(nmlog2n)O(nmlog2n)
9Sleator & Tarjan [9]1983O(nmlogn)O(nmlogn)
10Gabow [10]1985O(nmlogU)O(nmlogU)
11Goldberg & Tarjan [11]1988O(nmlog(n2/m))O(nmlog(n2/m))
12Ahuja & Orlin [12]1989O(nm+n2logU)O(nm+n2logU)
13Ahuja, Orlin & Tarjan [13]1989O(nmlog(nU−−√/(m+2))O(nmlog(nU/(m+2))
14King, Rao & Tarjan [14]1992O(nm+n2+e)O(nm+n2+e)
15King, Rao & Tarjan [15]1994O(nmlogm/nlognn)O(nmlogm/nlognn)
16Cheriyan, Hagerup & Mehlhorn [16]1996O(n3/logn)O(n3/logn)
17Goldberg & Rao [17]1998O(min{n(2/3),m1/2}mlogn2/mlogU)O(min{n(2/3),m1/2}mlogn2/mlogU)
18Orlin [18]2012O(nm)O(nm)
19Orlin [18]2012O(n2/logn)ifm=O(n)O(n2/logn)ifm=O(n)
  • [1] L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian Journal of Mathematics, 8:399-404, 1956.
  • [2] J. Edmonds and R. M. Karp. Theoretical improvements in algorithmic eciency for network flow problems. Journal of the ACM, 19:248-264, 1972.
  • [3] E. A. Dinic. Algorithm for solution of a problem of maximum flow in networks with power estimation. Soviet Mathematics Doklady, 11:1277{1280, 1970
  • [4] A. V. Karzanov. Determining the maximal flow in a network by the method of preflows. Soviet Mathematics Doklady, 15:434-437, 1974.
  • [5] B. V. Cherkasky. Algorithm for construction of maximal flow in networks with complexity of O(V2E−−√)O(V2E)operations. Mathematical Methods of Solution of Economical Problems, 17:112-125, 1977. (In Russian).
  • [6] V. M. Malhotra, P. Kumar, and S. N. Maheshwari. An O(V3)O(V3) algorithm for finding the maximum flows in networks. Information Processing Letters, 7:277-278, 1978.
  • [7] Z. Galil. An O(V5/3E2/3)O(V5/3E2/3) algorithm for the maximal flow problem. Acta Informatica, 14(3):221-242, 1980.
  • [8] Z. Galil and A. Naaman. An O(VElog2E)O(VElog2E) algorithm for the maximal flow problem. J.Computer and System Sciences, 21:203-217., 1980.
  • [9] D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees. J. Computer and System Sciences, 24:362-391, 1983.
  • [10] H. N. Gabow. A data structure for dynamic trees. J. Computer and System Sciences, 31:148-168, 1985.
  • [11] A. V. Goldberg and R. E. Tarjan. A new approach to the maximum flow problem. Journal of the ACM, 35:921-940, 1988.
  • [12] R. K. Ahuja and J. B. Orlin. A fast and simple algorithm for the maximum flow problem. Operations Research, 37:748-759, 1989.
  • [13] R. K. Ahuja, J. B. Orlin, and R. E. Tarjan. Improved time bounds for the maximum flow problem. SIAM Journal on Computing, 18:939-954, 1989.
  • [14] V. King, S. Rao, and R. Tarjan. A faster deterministic maximum flow algorithm. In Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 157{164, 1992.
  • [15] V. King, S. Rao, and R. Tarjan. A faster deterministic maximum flow algorithm. J. Algorithms, 23:447-474, 1994.
  • [16] J. Cheriyan, T. Hagerup, and K. Mehlhorn. An O(n3)O(n3) time maximum-flow algorithm. SIAM Journal on Computing, 45:1144-1170, 1996.
  • [17] A. V. Goldberg and S. Rao. Beyond the flow decomposition barrier. Journal of the ACM, 45:783-797, 1998.
  • [18] J. B. Orlin, “Max flows in o(nm)o(nm) time, or better,” in Proceedings of the 45th annual ACM symposium on Symposium on theory of computing, ser. STOC ’13. New York, NY,USA: ACM, 2013, pp. 765–774. [Online]. Available: http://doi.acm.org/10.1145/2488608.2488705
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值