统计学习方法---有约束最优化方法(不等式约束)

不等式约束问题:等式约束、大于号约束,小于号约束————>约束方程=0和约束方程<0

1.拉格朗日乘子法:

解决的是凸优化问题,即

 怎么判断一个目标函数是不是凸优化问题呢?https://www.zhihu.com/question/334515180

 它的关键一步是将不等式约束问题变为等式求最优问题,将约束和最优目标进行联合求解。

拉格朗日乘子法:将原问题转化为极小极大问题,极大问题

2.KKT条件:

其实是引入了松弛变量(不等式的乘子)和拉格朗日乘子(等式的乘子),然后最后还是将所有的导数为0去找极值。

对于松弛变量*不等式=0的解释为两个相交的等高线在相切时同时满足。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值