最小生成树——Prim和Kruskal算法


简介

求最小生成树的目的:
最常见的便是,在多个途经点中计划出一条最快捷的路线。

求最小生成树的两种算法:

  1. 普利姆算法 Prim
  2. 克鲁斯卡尔算法 Kruskal

二者主要区别在于:
Prim通过遍历图的顶点来寻找最小生成树;Kruskal通过遍历边来寻找。
因此Prim的优势在于遍历稠密图,即点少边多的情况;Kruskal的优势在于遍历稀疏图,即边少点多的情况。

提示:下附算法代码,亲测可用


1. Prim算法

Prim基于贪心算法,遍历各顶点。

代码如下:

#include "iostream"
using namespace std;
#define MAX 1000
#define N 10
typedef struct {
    int vnum;
    int anum;
    int vertex[N];
    int edge[N][N];
}MGraph;
void CreateGraph(MGraph& G, int vnum, int v[6], int a[6][6])
{
    G.vnum = vnum;
    G.anum = vnum * vnum;
    for (int i = 0; i < vnum; i++)
    {
        G.vertex[i] = v[i];
    }
    for (int i = 0; i < vnum; i++)
    {
        for (int j = 0; j < vnum; j++)
        {
            G.edge[i][j] = a[i][j];
        }
    }
    return;
}
void prim(MGraph& G)
{
    /// 1. 初始化
    int min, i, j, k;
    int adjvex[N];
    int lowcost[N];
    lowcost[0] = 0;
    adjvex[0] = 0;
    for (i = 1; i < G.vnum; i++)
    {
        lowcost[i] = G.edge[0][i];
        adjvex[i] = 0;
    } 
     
    /// 2. mini Tree
    for (i = 1; i < G.vnum; i++)
    {
        min = MAX;
        j = 1;
        k = 0;
        // 2.1 min weight in each loop
        while (j < G.vnum)
        {
            if (lowcost[j] != 0 and lowcost[j] < min)
            {
                min = lowcost[j];
                k = j;
                adjvex[j] = min;
            }
            j++;
        }
        cout << "adjvex[k]: " << adjvex[k] << " k: " << k << endl;
        lowcost[k] = 0;

        // 2.2 get new array with low weight for next loop
        for (j = 1; j < G.vnum; j++)
        {
            if (lowcost[j] != 0 and G.edge[k][j] < lowcost[j])
            {
                lowcost[j] = G.edge[k][j];
                adjvex[j] = k;
            }
        }
    }
}

int main()
{
    MGraph G;
    int vnum = 6;
    int v[6] = {0, 1, 2, 3, 4, 5};
    int a[6][6] = {0, 1, 3, 7, 9, 2,
                   1, 0, 4, 8, 3, 5,
                   3, 4, 0, 6, 11, 10,
                   7, 8, 6, 0, 17, 16,
                   9, 3, 11, 17, 0, 21,
                   2, 5, 10, 16, 21, 0};
    CreateGraph(G, vnum, v, a);
    prim(G);
    return 0;
}

若输入邻接矩阵如下:

0 1 3 7 9 2
1 0 4 8 3 5
3 4 0 6 11 10
7 8 6 0 17 16
9 3 11 17 0 21
2 5 10 16 21 0

则运行结果如下:

adjvex[k]: 1 k: 1
adjvex[k]: 2 k: 5
adjvex[k]: 3 k: 2
adjvex[k]: 3 k: 4
adjvex[k]: 6 k: 3

每次循环的lowcost数组为:

0 1 3 7 9 2
0 0 3 7 3 2
0 0 3 7 3 0 
0 0 0 6 3 0
0 0 0 6 0 0

2. Kruskal算法

代码如下:

#include <iostream>
#define N 100
typedef struct
{
    int v1;
    int v2;
    int weight;
}Edge;
typedef struct
{
    int vnum;
    int anum;
    Edge edge[100];
    int node[100];
}MGraph;
bool CreateALGraph(MGraph& G, int vnum, int anum, int n[N], int a[N][3])
{
    G.vnum = vnum;
    G.anum = anum;
    for (int i = 0; i < vnum; i++)
    {
        G.node[i] = n[i];
    }
    for (int i = 0; i < anum; i++)
    {
        G.edge[i].v1 = a[i][0];
        G.edge[i].v2 = a[i][1];
        G.edge[i].weight = a[i][2];
    }
    return true;
}

int parent[N];
int Find(int i)
{
    while (parent[i] > 0)
        i = parent[i];
    return i;
}
int MiniTree(MGraph& G)
{
    for (int i = 0; i < G.vnum; i++)
        parent[i] = 0;
    for (int i = 0; i < G.anum; i++)
    {
        int m = Find(G.edge[i].v1);
        int n = Find(G.edge[i].v2);
        if ( n != m)
        {
            parent[m] = n;
            std::cout << "v1: " << G.edge[i].v1 << " v2: " << G.edge[i].v2 << " weight: " << G.edge[i].weight << std::endl;
        }
    }
    return 0;
}

int main()
{
    MGraph G;
    int n[N] = {0, 1, 2, 3, 4, 5, 6, 7, 8};
    int a[N][3] = {4, 7, 7,
                   2, 8, 8,
                   0, 1, 10,
                   0, 5, 11,
                   1, 8, 12,
                   3, 7, 16,
                   1, 6, 16,
                   5, 6, 17,
                   1, 2, 18,
                   6, 7, 19,
                   3, 4, 20,
                   3, 8, 21,
                   2, 3, 22,
                   3, 6, 24,
                   4, 5, 26};
    CreateALGraph(G, 6, 15, n, a);
    MiniTree(G);
    return 0;
}

运行结果如下:

v1: 4 v2: 7 weight: 7
v1: 2 v2: 8 weight: 8
v1: 0 v2: 1 weight: 10
v1: 0 v2: 5 weight: 11
v1: 1 v2: 8 weight: 12
v1: 3 v2: 7 weight: 16
v1: 1 v2: 6 weight: 16
v1: 6 v2: 7 weight: 19

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值