ML一些处理的技巧

1.数据的标准化与归一化处理

from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import MinMaxScaler
import numpy as np

data = np.random.random_integers(0, 100, (100, 2))

ss = StandardScaler()

data = ss.fit_transform(data)

data1 = np.random.random_integers(0, 100, (100, 2))

mm = MinMaxScaler()

mm_data = mm.fit_transform(data1)

origin_data = mm.inverse_transform(mm_data)

#如果需要对其中的某一行进行reverse,则需要将数据reshape为(1,line)

2.numpy transpose的用法

>>> x = np.ones((1, 2, 3))
>>> np.transpose(x, (1, 0, 2)).shape
(2, 1, 3)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值