Transformer模型在深度学习界可是大明星呢!🌟 它通过自注意力机制,让处理序列数据变得游刃有余,尤其在自然语言处理(NLP)领域,表现超级出色!📚
来来来,让我们一起探索Transformer的核心组件,用轻松的方式理解这个强大的模型。🤖

  1. 编码器(Encoder)和解码器(Decoder):Transformer的心脏和灵魂!编码器负责读取和理解输入序列,解码器则负责生成输出序列。两者通常由多个相同的层堆叠而成。
  2. 自注意力层(Self-Attention Layers):这是Transformer的魔法所在!它能同时考虑到序列中的每个元素与其他所有元素的关系,捕捉长距离依赖关系,这在传统的循环神经网络(RNN)和长短时记忆网络(LSTM)中是个大难题。
  3. 前馈神经网络(Feed-Forward Neural Networks):在每个自注意力层之后,这些网络对输出进行进一步的非线性变换,增强模型的表达能力。
  4. 位置编码(Positional Encoding):Transformer本身不具有处理序列顺序的能力,所以位置编码来帮忙,提供序列中元素的位置信息。
    现在,让我们用TensorFlow库来实现一个简化版的Transformer模型吧!🔧💻
    首先,确保安装了TensorFlow。如果还没安装,快用这个命令安装吧:
pip install tensorflow
  • 1.

接下来,我们用代码展示Transformer的核心组件:

  1. 位置编码(Positional Encoding):这个函数为每个位置创建一个编码,这样模型就能理解单词的顺序啦。
def positional_encoding(position, d_model):
    # 计算角度
    angle_rates = 1 / tf.pow(10000, (2 * (tf.range(d_model, dtype=tf.float32) // 2)) / d_model)
    angle_rads = tf.range(position, dtype=tf.float32) * angle_rates
    # 应用sin和cos
    sines = tf.math.sin(angle_rads[:, 0::2])
    cosines = tf.math.cos(angle_rads[:, 1::2])
    pos_encoding = tf.concat([sines, cosines], axis=-1)
    pos_encoding = pos_encoding[tf.newaxis, ...]
    return tf.cast(pos_encoding, tf.float32)
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  1. 编码器层(Encoder Layer):这是Transformer中最重要的部分之一,包括多头注意力机制和前馈神经网络。
class EncoderLayer(tf.keras.layers.Layer):
    def __init__(self, d_model, num_heads, dff, dropout_rate):
        super(EncoderLayer, self).__init__()
        # 多头注意力
        self.mha = tf.keras.layers.MultiHeadAttention(num_heads=num_heads, key_dim=d_model)
        # 前馈网络
        self.ffn = tf.keras.Sequential([
            tf.keras.layers.Dense(dff, activation='relu'),
            tf.keras.layers.Dense(d_model)
        ])
        # 层归一化和dropout
        self.layernorm1 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
        self.layernorm2 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
        self.dropout1 = tf.keras.layers.Dropout(dropout_rate)
        self.dropout2 = tf.keras.layers.Dropout(dropout_rate)
    def call(self, x, training, mask):
        attn_output, _ = self.mha(x, x, x, attention_mask=mask)
        attn_output = self.dropout1(attn_output, training=training)
        out1 = self.layernorm1(x + attn_output)
        ffn_output = self.ffn(out1)
        ffn_output = self.dropout2(ffn_output, training=training)
        out2 = self.layernorm2(out1 + ffn_output)
        return out2
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  1. 实例化编码器层:创建一个编码器层的实例,准备进行测试。
encoder_layer = EncoderLayer(d_model, num_heads, dff, dropout_rate)
  • 1.
  1. 测试编码器层:用随机数据测试编码器层,确保一切正常运作。
sample_output = encoder_layer(tf.random.uniform((64, 43, d_model)), False, None)
sample_output.shape  # 应该是 (batch_size, input_seq_len, d_model)
  • 1.
  • 2.

这个示例展示了Transformer模型的基本结构,但要构建一个完整的Transformer模型,还需要包括解码器、嵌入层、输出层等组件,以及完整的训练和推理过程。希望这个简化版的示例能帮助你更好地理解Transformer模型的工作原理!🚀

如果你觉得我讲的不够清楚,或者想要更深入地了解,欢迎在文章下方留言,与我交流!😊