无穷大和无穷小_下划线

一、无穷小

首先我们要正确认识无穷小,简单来说无穷小就是以 0 为极限的函数。那么说到函数极限,自变量有两个过程:①其中一个过程是 𝑥 趋近于 𝑥0 时, 𝑓(𝑥) 趋近于 0 ,即 lim𝑥→𝑥0𝑓(𝑥)=0 ,我们就说 𝑓(𝑥) 为 𝑥 趋近于 𝑥0 时的无穷小;②另一个过程是 𝑥 趋近于 ∞ 时, 𝑓(𝑥) 趋近于 0 ,即 lim𝑥→∞𝑓(𝑥)=0 ,我们就说 𝑓(𝑥) 为 𝑥 趋近于 ∞ 时的无穷小。所以我们说无穷小就是以 0 为极限的函数。下面介绍一下无穷小的定义:

1.无穷小的定义:设 𝑓(𝑥) 在 𝑥0 的某去心邻域内有定义(或在 |𝑥| 大于某正数时有定义)。如果对任给的正数 𝜀 ,总存在正数 𝛿 (或正数 𝑋 ),使当 0<|𝑥−𝑥0|<𝛿 (或 |𝑥|>𝑋 )时,不等式 |𝑓(𝑥)−0|=|𝑓(𝑥)|<𝜀 恒成立,则称 𝑓(𝑥) 是 𝑥→𝑥0 (或 𝑥→∞ )时的无穷小。记作: lim𝑥→𝑥0𝑓(𝑥)=0 (或 lim𝑥→∞𝑓(𝑥)=0 )。

比如:① 因为 lim𝑥→1(𝑥−1)=0 ,所以 𝑓(𝑥)=𝑥−1 是 𝑥→1 时的无穷小。

②因为 lim𝑥→∞1/𝑥=0 ,所以 𝑓(𝑥)=1𝑥 是 𝑥→∞ 时的无穷小。

再次强调:无穷小是以 0 为极限的函数,不能混同于一个很小的数。当然函数 𝑓(𝑥)=0 ,在 𝑥→0 时,也是以 0 为极限的函数,所以我们说 是一个特殊的无穷小

2.无穷小与函数极限的关系:

定理1:在 𝑥→𝑥0(𝑥→∞) 时,有极限的函数等于它的极限与一个无穷小之和;反之,如果函数可以表示成常数和一个无穷小之和,那么这个常数就是函数的极限。

 证明:设 lim𝑥→𝑥0𝑓(𝑥)=𝐴 , 对任给的,有,使当时,对任给的𝜀>0,有𝛿>0,使当0<|𝑥−𝑥0|<𝛿时,_ |𝑓(𝑥)−𝐴|<𝜀 。令 𝑔(𝑥)=𝑓(𝑥)−𝐴 ①,则|𝑔(𝑥)|<𝜀_ ,故 lim𝑥→𝑥0𝑔(𝑥)=0_ 。

我们把带有下划线的文字连城一句话:对任给的 𝜀>0 ,有 𝛿>0 ,使当 0<|𝑥−𝑥0|<𝛿 时, |𝑔(𝑥)|<𝜀 ,故 lim𝑥→𝑥0𝑔(𝑥)=0 ,这不正是无穷小的定义嘛~,所以函数 𝑔(𝑥) 是 𝑥→𝑥0 时的无穷小,并且由关系式①有 𝑓(𝑥)=𝐴+𝑔(𝑥) ,所以,有极限的函数 𝑓(𝑥) 等于它的极限 𝐴 和一个无穷小之和。这样我们就证明出定理的第一部分,下面证明定理的第二部分:

设 𝑓(𝑥)=𝐴+𝑔(𝑥) ②,其中函数 𝑔(𝑥) 为 𝑥→𝑥0 时的无穷小,即 lim𝑥→𝑥0𝑔(𝑥)=0 ,对于函数 𝑔(𝑥) 由极限的定义知, 对任给的,有,使当时对任给的𝜀>0,有𝛿>0,使当0<|𝑥−𝑥0|<𝛿时_ , |𝑔(𝑥)−0|=|𝑔(𝑥)|<𝜀 ,并且根据关系式 ② 知, 𝑔(𝑥)=𝑓(𝑥)−𝐴 ,故 |𝑓(𝑥)−𝐴|<𝜀_ 。我们把带有下划线的文字连成一句话:对任给的 𝜀>0 ,有 𝛿>0 ,使当 0<|𝑥−𝑥0|<𝛿 时, |𝑓(𝑥)−𝐴|<𝜀 。 所以 lim𝑥→𝑥0𝑓(𝑥)=𝐴 。这样我们就证明了如果当 𝑥→𝑥0 函数 𝑓(𝑥) 可以表示成常数 𝐴 和一个无穷小之和,那么这个常数 𝐴 就是函数 𝑓(𝑥) 在𝑥→𝑥0时的极限。

二、无穷大

简单来说,无穷大就是无穷小的倒数。也可以说,当 𝑥→𝑥0 时 𝑓(𝑥) 的绝对值无限增大,而 |𝑓(𝑥)| 无限增大的含义就是 |𝑓(𝑥)| 大于事先给定的任意大的正数 𝑀 。下面我们就给出了无穷大的定义:

1.无穷大的定义:设 𝑓(𝑥) 在 𝑥0 的某去心邻域内有定义(或在 |𝑥| 大于某正数时有定义)。如果对任给的正数 𝑀 ,总存在正数 𝛿 (或正数 𝑋 ),使当 0<|𝑥−𝑥0|<𝛿 (或 |𝑥|>𝑋 )时,不等式 |𝑓(𝑥)|>𝑀 恒成立,则称 𝑓(𝑥) 是 𝑥→𝑥0 (或 𝑥→∞ )时的无穷大。

注:如果 𝑓(𝑥) 是无穷大,按照极限的定义, 𝑓(𝑥) 是没有极限的,因为它不是无限接近于任何一个固定的常数。但是为了叙述 𝑓(𝑥) 是无穷大这个事实,有时也说 𝑓(𝑥) 的极限是无穷大,记作:lim 𝑥→𝑥0 f(x)=∞(或lim 𝑥→∞ f(x)=∞)

同样我们也可以定义正无穷大负无穷大

如果在定义中,把 |𝑓(𝑥)|>𝑀 改成 (或𝑓(𝑥)>𝑀(或𝑓(𝑥)<−𝑀) ,则可给出正无穷大和负无穷大的定义:

① 正无穷大:设 𝑓(𝑥) 在 𝑥0 的某去心邻域内有定义(或在 |𝑥| 大于某正数时有定义)。如果对任给的正数 𝑀 ,总存在正数 𝛿 (或正数 𝑋 ),使当 0<|𝑥−𝑥0|<𝛿 (或 |𝑥|>𝑋 )时,不等式 𝑓(𝑥)>𝑀 恒成立,则称 𝑓(𝑥) 是 𝑥→𝑥0 (或 𝑥→∞ )时的正无穷大。

② 负无穷大:设 𝑓(𝑥) 在 𝑥0 的某去心邻域内有定义(或在 |𝑥| 大于某正数时有定义)。如果对任给的正数 𝑀 ,总存在正数 𝛿 (或正数 𝑋 ),使当 0<|𝑥−𝑥0|<𝛿 (或 |𝑥|>𝑋 )时,不等式 𝑓(𝑥)<−𝑀 恒成立,则称 𝑓(𝑥) 是 𝑥→𝑥0 (或 𝑥→∞ )时的负无穷大。

2.无穷大和无穷小的关系(互为倒数):

定理2:在 (或)𝑥→𝑥0(或𝑥→∞) 时,如果 𝑓(𝑥) 是无穷小,那么 1𝑓(𝑥) 是无穷大;反之,如果 𝑓(𝑥) 是无穷大,那么 1𝑓(𝑥) 是无穷小。

三、无穷小的性质

1.有限个无穷小的和是无穷小。

无穷大和无穷小_邻域_02

2.有界函数与无穷小的乘积是无穷小。

无穷大和无穷小_下划线_03

补充:① 常数与无穷小的乘积是无穷小。

这是因为常数本身就是有界函数,而有界函数与无穷小的乘积是无穷小

② 有限个无穷小的乘积是无穷小。

这是因为:假设有两个无穷小 𝛼,𝛽 ,即 𝛼→0,𝛽→0(𝑥→𝑥0) 。因为 𝛼 是无穷小,这就有 lim𝑥→𝑥0𝛼=0 ( 𝛼 的极限是 0 ),而一个函数在 𝑥0 的某个去心邻域内有极限必然在 𝑥0 的某个去心邻域内也有界(这在上一讲有证明过)。所以两个无穷小 𝛼 和 𝛽 的乘积最终可以转化为有界函数 𝛼 和无穷小 𝛽 的乘积,所以两个无穷小乘积仍是无穷小。同理可推,有限个无穷小乘积也仍是无穷小。