人工智能数学基础6:无穷大和无穷小的大小比较以及斯特林公式

☞ ░ 前往老猿Python博客 https://blog.csdn.net/LaoYuanPython

1.无穷大的大小排列

n、a1、a2、a3为自然数(表述为n∈N),n趋于无穷大(n→∞),a1、a2、a3大于1,则下列实数的大小排列为:
在这里插入图片描述

2. 无穷小的大小排列

将无穷大的大小排列公式中比较的数字作为分母,1作为分子,大于号改为小于号,则可以作为无穷小大小排列公式:
在这里插入图片描述

3.极限值

n为自然数(表述为n∈N),n趋于无穷大(n→∞),a2、a3大于1,则下列极限值为0:
在这里插入图片描述

4. 斯特林公式(Stirling’s approximation)

斯特林公式(Stirling’s approximation)是一条用来取n的阶乘的近似值的数学公式。公式如下:
在这里插入图片描述
斯特林公式(Stirling’s approximation)是一条用来取n的阶乘的近似值的数学公式。一般来说,当n很大的时候,n阶乘的计算量十分大,所以斯特林公式十分好用,而且,即使在n很小的时候,斯特林公式的取值已经十分准确。

写作不易,敬请支持:

如果觉得本文可以给您带来帮助,请大家点击下面的一键三连帮忙点个赞、加个收藏,谢谢!

关于老猿的付费专栏

老猿的付费专栏《使用PyQt开发图形界面Python应用 》(https://blog.csdn.net/laoyuanpython/category_9607725.html)专门介绍基于Python的PyQt图形界面开发基础教程,付费专栏《moviepy音视频开发专栏》 (https://blog.csdn.net/laoyuanpython/category_10232926.html)详细介绍moviepy音视频剪辑合成处理的类相关方法及使用相关方法进行相关剪辑合成场景的处理,两个专栏都适合有一定Python基础但无相关知识的小白读者学习。

付费专栏文章目录:《moviepy音视频开发专栏文章目录》(https://blog.csdn.net/LaoYuanPython/article/details/107574583)、《使用PyQt开发图形界面Python应用专栏目录 》(https://blog.csdn.net/LaoYuanPython/article/details/107580932)。

对于缺乏Python基础的同仁,可以通过老猿的免费专栏《专栏:Python基础教程目录》(https://blog.csdn.net/laoyuanpython/category_9831699.html)从零开始学习Python。

如果有兴趣也愿意支持老猿的读者,欢迎购买付费专栏。

跟老猿学Python,学Moviepy!

☞ ░ 前往老猿Python博文目录 https://blog.csdn.net/LaoYuanPython/article/details/98245036

©️2020 CSDN 皮肤主题: 酷酷鲨 设计师:CSDN官方博客 返回首页
实付 29.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值