卷积 是信号与系统中一个具有重大意义的方法,曾经询问过很多学习过这门课的学生还有考研的学生,很多人根本就不知道学了个啥,个人认为如果真正要把这门课学懂讲懂要多结合控制方面的知识去理解和探索,从一个工程的角度去理解卷积本人认为要理解好卷积主要解决以下几个问题:
1、卷积用来做什么?
2、什么是卷积?
3、为什么可以用卷积来求取系统的零状态响应?
4、为什么是输入信号和系统的冲击响应做卷积?
5、如何计算卷积?图像法和积分法
6、卷积的几个 性质
1、卷积用来做什么?
首先,我们在工程中通常遇到要去求取系统的响应,系统的响应可以分为:零输入相应和零状态响应。
零输入响应的求取可以通过求解一个齐次微分方程得到,是相对容易的。
零状态响应如果要用数学的方法去求取那么要求求解一个非齐次微分方程,由于输入是千差万别的如果遇到较为复杂的输入信号那么求取这个非齐次微分方程是相对较为复杂的,所以我们另辟蹊径用一种全新的方法来解决这个问题,也就是我们用卷积来求取系统的零状态响应。
2、什么是卷积?
首先在解决这个问题之前我们先要有一种思想:现在我们到了去理解卷积是什么这个环节了,卷积是一种数学手段,它在信号与系统里面是用来求取系统的零状态响应的。我们先去从数学定义上去认识卷积的形式,之后我们可以抛开数学含义,从工程的角度去理解卷积。
连
续
形
式
:
r
(
t
)
=
e
(
t
)
∗
h
(
t
)
=
∫
−
∞
+
∞
e
(
τ
)
h
(
t
−
τ
)
d
τ
离
散
形
式
:
r
(
k
)
=
e
(
k
)
∗
h
(
k
)
=
∑
i
=
−
∞
∞
e
(
i
)
h
(
k
−
i
)
连续形式:r(t)=e(t) * h(t)=\int_{-\infty}^{+\infty} e(\tau) h(t-\tau) d \tau \\ 离散形式:\quad r(k)=e(k) * h(k)=\sum_{i=-\infty}^{\infty} e(i) h(k-i)
连续形式:r(t)=e(t)∗h(t)=∫−∞+∞e(τ)h(t−τ)dτ离散形式:r(k)=e(k)∗h(k)=i=−∞∑∞e(i)h(k−i)
注:
e
(
t
)
∗
h
(
t
)
e(t) * h(t)
e(t)∗h(t)就表示这两个函数卷积,最终积分结果是一个关于t的函数
3、为什么可以用卷积来求取系统的零状态响应?
首先对于任何一个输入信号我们可以把他分解为许多脉冲分量之和的形式,如矩形窄脉冲。
步 长 Δ τ 步长 \Delta \tau 步长Δτ表示矩形脉冲宽度 f ( k Δ τ ) f(k \Delta \tau) f(kΔτ)表示矩形脉冲高度,那么我们可以得到如下式子:
第0个脉冲: f 0 ( t ) = f ( 0 ) [ u ( t ) − u ( t − Δ τ ) ] f_{0}(t)=f(0)[u(t)-u(t-\Delta \tau)] f0(t)=f(0)[u(t)−u(t−Δτ)]
第1个脉冲: f 1 ( t ) = f ( Δ τ ) [ u ( t − Δ τ ) − u ( t − 2 Δ τ ) ] f_{1}(t)=f(\Delta \tau)[u(t-\Delta \tau)-u(t-2\Delta \tau)] f1(t)=f(Δτ)[u(t−Δτ)−u(t−2Δτ)]
… … \ldots \ldots \\ ……
第k个脉冲: f k ( t ) = f ( k Δ τ ) [ u ( t − k Δ τ ) − u ( t − k Δ τ − Δ τ ) ] f_{k}(t)=f(k\Delta \tau)[u(t-k\Delta \tau)-u(t-k\Delta \tau-\Delta \tau)] fk(t)=f(kΔτ)[u(t−kΔτ)−u(t−kΔτ−Δτ)]
那么把这些脉冲求和起来之和就可以等效为原来的输入信号了:
f
(
t
)
≅
∑
k
=
−
∞
∞
f
(
k
Δ
τ
)
[
u
(
t
−
k
Δ
τ
)
−
u
(
t
−
k
Δ
τ
−
Δ
τ
)
]
f(t) \cong \sum_{k=-\infty}^{\infty} f(k \Delta \tau)[u(t-k \Delta \tau)-u(t-k \Delta \tau-\Delta \tau)]
f(t)≅k=−∞∑∞f(kΔτ)[u(t−kΔτ)−u(t−kΔτ−Δτ)]
当 Δ τ 趋于无穷小的时候,由微分的定义可以得到 u ( t ) − u ( t − Δ τ ) ≈ d u ( t ) d t ⋅ Δ τ 又 ∵ d u ( t ) d t = δ ( t ) \begin{array}{lll}\text { 当 } \Delta \tau \text { 趋于无穷小的时候,由微分的定义可以得到 } u(t)-u(t-\Delta \tau) \approx \frac{d u(t)}{d t} \cdot \Delta \tau \\ 又\because \frac{d u(t)}{d t}=\delta(t)\end{array} 当 Δτ 趋于无穷小的时候,由微分的定义可以得到 u(t)−u(t−Δτ)≈dtdu(t)⋅Δτ又∵dtdu(t)=δ(t)
∴
f
0
(
t
)
=
Δ
τ
f
(
0
)
δ
(
t
)
f
1
(
t
)
=
Δ
τ
f
(
Δ
τ
)
δ
(
t
−
Δ
τ
)
f
2
(
t
)
=
Δ
τ
f
(
2
Δ
τ
)
δ
(
t
−
2
Δ
τ
)
…
…
f
k
(
t
)
=
Δ
τ
f
(
k
Δ
τ
)
δ
(
t
−
k
Δ
τ
)
…
…
.
\begin{array}{c} \therefore f_{0}(t)=\Delta \tau f(0) \delta(t) \\ f_{1}(t)=\Delta \tau f(\Delta \tau) \delta(t-\Delta \tau) \\ f_{2}(t)=\Delta \tau f(2 \Delta \tau) \delta(t-2 \Delta \tau) \\ \quad \ldots \ldots \\ f_{k}(t)=\Delta \tau f(k \Delta \tau) \delta(t-k \Delta \tau) \\ \ldots \ldots . \\ \end{array}
∴f0(t)=Δτf(0)δ(t)f1(t)=Δτf(Δτ)δ(t−Δτ)f2(t)=Δτf(2Δτ)δ(t−2Δτ)……fk(t)=Δτf(kΔτ)δ(t−kΔτ)…….
∴
f
(
t
)
=
∑
k
=
−
∞
∞
Δ
τ
f
(
k
Δ
τ
)
δ
(
t
−
k
Δ
τ
)
\therefore f(t) = \sum_{k=-\infty}^{\infty} \Delta \tau f(k \Delta \tau) \delta(t-k \Delta \tau)
∴f(t)=k=−∞∑∞Δτf(kΔτ)δ(t−kΔτ)
即:
f
(
t
)
f(t)
f(t) 由无限多个出现在不同位置,强度不同的冲激函数组成。这一点至关重要,这也是为什么我们可以用输入信号和系统的冲击响应做卷积得到系统的零状态响应的本质原因之一。
Δ
τ
→
d
τ
k
Δ
τ
→
τ
∑
−
∞
+
∞
→
∫
−
∞
+
∞
由
f
(
t
)
=
∑
k
=
−
∞
∞
Δ
t
f
(
k
Δ
τ
)
δ
(
t
−
k
Δ
τ
)
\Delta \tau \rightarrow d \tau \quad\quad k \Delta \tau \rightarrow \tau \quad\quad \sum_{-\infty}^{+\infty} \rightarrow \int_{-\infty}^{+\infty} \\ 由 f(t)=\sum_{k=-\infty}^{\infty} \Delta t f(k \Delta \tau) \delta(t-k \Delta \tau)
Δτ→dτkΔτ→τ−∞∑+∞→∫−∞+∞由f(t)=k=−∞∑∞Δtf(kΔτ)δ(t−kΔτ)
注:无穷项求和,区间无穷小,转化为求积分。
得
到
f
(
t
)
=
∫
−
∞
+
∞
f
(
τ
)
δ
(
t
−
τ
)
d
τ
得到 f(t)=\int_{-\infty}^{+\infty} f(\tau) \delta(t-\tau) d \tau
得到f(t)=∫−∞+∞f(τ)δ(t−τ)dτ
τ
:
−
∞
→
+
∞
τ
=
\tau:-\infty \rightarrow+\infty \quad \tau=
τ:−∞→+∞τ= t时
f
(
t
)
f(t)
f(t) 存在(抽样特性)
∴
f
(
t
)
,
t
从
−
∞
到
+
∞
都
出
现
\therefore f(t), t 从-\infty 到+\infty 都 出 现
∴f(t),t从−∞到+∞都出现
注:对于有起因信号,
t
<
0
\mathrm{t}<0
t<0 时
f
(
t
)
=
0
,
\mathrm{f}(\mathrm{t})=0,
f(t)=0, 则
f
(
t
)
=
∫
0
+
∞
f
(
τ
)
δ
(
t
−
τ
)
d
τ
f(t)=\int_{0}^{+\infty} f(\tau) \delta(t-\tau) d \tau
f(t)=∫0+∞f(τ)δ(t−τ)dτ
4、为什么是输入信号和系统的冲击响应做卷积?
现在假设我们研究的是线性时不变系统,我们应用线性特性和时不变特性可以得到输入和输出之间的关系如下所示:
∴
Δ
τ
f
(
0
)
δ
(
t
)
→
Δ
τ
f
(
0
)
h
(
t
)
Δ
τ
f
(
Δ
τ
)
δ
(
t
−
Δ
τ
)
→
Δ
τ
f
(
Δ
τ
)
h
(
t
−
Δ
τ
)
Δ
τ
f
(
2
Δ
τ
)
δ
(
t
−
2
Δ
τ
)
→
Δ
τ
f
(
2
Δ
τ
)
h
(
t
−
2
Δ
τ
)
…
…
.
Δ
τ
f
(
k
Δ
τ
)
δ
(
t
−
k
Δ
τ
)
→
Δ
τ
f
(
k
Δ
τ
)
h
(
t
−
k
Δ
τ
)
\begin{array}{c} \therefore \Delta \tau f(0) \delta(t) \rightarrow \Delta \tau f(0) h(t) \\ \Delta \tau f(\Delta \tau) \delta(t-\Delta \tau) \rightarrow \Delta \tau f(\Delta \tau) h(t-\Delta \tau) \\ \Delta \tau f(2 \Delta \tau) \delta(t-2 \Delta \tau) \rightarrow \Delta \tau f(2 \Delta \tau) h(t-2 \Delta \tau) \\ \ldots \ldots . \\ \Delta \tau f(k \Delta \tau) \delta(t-k \Delta \tau) \rightarrow \Delta \tau f(k \Delta \tau) h({t}-k \Delta \tau) \end{array}
∴Δτf(0)δ(t)→Δτf(0)h(t)Δτf(Δτ)δ(t−Δτ)→Δτf(Δτ)h(t−Δτ)Δτf(2Δτ)δ(t−2Δτ)→Δτf(2Δτ)h(t−2Δτ)…….Δτf(kΔτ)δ(t−kΔτ)→Δτf(kΔτ)h(t−kΔτ)
左边之和(激励输入信号)
f
(
t
)
=
∑
k
=
−
∞
+
∞
Δ
τ
f
(
k
Δ
τ
)
δ
(
t
−
k
Δ
τ
)
→
f
(
t
)
=
∫
−
∞
+
∞
f
(
τ
)
δ
(
t
−
τ
)
d
τ
f(t)=\sum_{k=-\infty}^{+\infty} \Delta \tau f(k \Delta \tau) \delta(t-k \Delta \tau)\\ \rightarrow f(t)=\int_{-\infty}^{+\infty} f(\tau) \delta(t-\tau) d \tau
f(t)=k=−∞∑+∞Δτf(kΔτ)δ(t−kΔτ)→f(t)=∫−∞+∞f(τ)δ(t−τ)dτ
右边之和 (系统响应信号)
g
(
t
)
=
∑
k
=
−
∞
+
∞
Δ
τ
f
(
k
Δ
τ
)
h
(
t
−
k
Δ
τ
)
g(t)=\sum_{k=-\infty}^{+\infty} \Delta \tau f(k \Delta \tau) h(t-k \Delta \tau)
g(t)=k=−∞∑+∞Δτf(kΔτ)h(t−kΔτ)
当
Δ
τ
→
d
τ
,
k
Δ
τ
→
τ
,
∑
−
∞
+
∞
→
∫
−
∞
+
∞
\Delta \tau \rightarrow d \tau \quad, \quad \mathrm{k} \Delta \tau \rightarrow \tau, \quad \sum_{-\infty}^{+\infty} \rightarrow \int_{-\infty}^{+\infty}
Δτ→dτ,kΔτ→τ,∑−∞+∞→∫−∞+∞
→
g
(
t
)
=
∫
−
∞
∞
f
(
τ
)
h
(
t
−
τ
)
d
τ
=
f
(
t
)
⊗
h
(
t
)
=
f
(
t
)
∗
h
(
t
)
\rightarrow g(t)=\int_{-\infty}^{\infty} f(\tau) h(t-\tau) d \tau=f(t) \otimes h(t)=f(t) * h(t)
→g(t)=∫−∞∞f(τ)h(t−τ)dτ=f(t)⊗h(t)=f(t)∗h(t)
这就实现了 我们通过卷积这种新的方式来求取系统的零状态响应
5、如何计算卷积?图像法和积分法和卷积的几个 性质这两点网上非常多总结,如果需要以后再更。