Sarsa-Lambda

from maze_env import Maze
from RL_brain import SarsaLambdaTable


def update():
    for episode in range(100):
        # initial observation
        observation = env.reset()

        # RL choose action based on observation
        action = RL.choose_action(str(observation))

        # initial all zero eligibility trace
        RL.eligibility_trace *= 0

        while True:
            # fresh env
            env.render()

            # RL take action and get next observation and reward
            observation_, reward, done = env.step(action)

            # RL choose action based on next observation
            action_ = RL.choose_action(str(observation_))

            # RL learn from this transition (s, a, r, s, a) ==> Sarsa
            RL.learn(str(observation), action, reward, str(observation_), action_)

            # swap observation and action
            observation = observation_
            action = action_

            # break while loop when end of this episode
            if done:
                break

    # end of game
    print('game over')
    env.destroy()

if __name__ == "__main__":
    env = Maze()
    RL = SarsaLambdaTable(actions=list(range(env.n_actions)))

    env.after(100, update)
    env.mainloop()
    print(RL.eligibility_trace)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

leetteel

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值