Low-Rank-Hankel Matrix

本文探讨了二维PSF的高斯函数近似及傅里叶变换在探测器成像中的应用,深入解析了矩阵分解、奇异值分解等线性代数概念,并介绍了广义逆矩阵与核范数的基本原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

memp

二维的PSF可近似为一个高斯函数:
(1) f ( x , y ) = 1 2 π σ 2 ∗ exp ⁡ − ( x 2 + y 2 ) / 2 σ 2 f(x,y)=\frac{1}{2\pi\sigma^2}*\exp^{-\frac{(x^2+y^2)/2}{\sigma^2}} \tag{1} f(x,y)=2πσ21expσ2(x2+y2)/2(1)
探测器成像可以表示为:
在这里插入图片描述
ci是某一点的强度;
(2) S ( u , v ) = ∬ − ∞ ∞ s ( x , y ) e x p − j 2 π ( x u + y v ) d x d y , = F ( u , v ) ∑ i = 1 I c i e x p − j 2 π ( x i u + y i v ) S(u,v) = \iint_{-\infty}^{\infty}s(x,y)exp^{-j2\pi(xu+yv)}dxdy,\tag{2} \\=F(u,v)\sum_{i=1}^{I}c_iexp^{-j2\pi(x_iu+y_iv)} S(u,v)=s(x,y)expj2π(xu+

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值