使用五种常用机器学习算法估计贷款用户是否逾期并对比评分

该博客介绍了如何利用逻辑回归、决策树、SVM、xgboost和LightGBM五种算法预测贷款用户是否会逾期。在数据预处理阶段,作者处理了缺失值,删除了无关特征,并对模型进行了训练和评估。存在的问题包括模型优化、参数调优和对不同算法的理解深化。
摘要由CSDN通过智能技术生成

一、背景及目标

根据提供的金融数据,分别使用逻辑回归、决策树、SVM、xgboost以及LightGBM这5种算法实现对贷款用户是否会逾期的预测估计,表格中,status是标签:0表示未逾期,1表示逾期。最后按不同的标准进行模型的评估。

二、任务分析

  1. 导入数据后,首先,由于数据中存在缺失值,因此需要对缺失值数据进行预处理。
  2. 其次,对明显与模型无关的特征进行删除。
  3. 最后,进行模型训练,预测结果以及输出评分。

三、数据预处理以及代码

一共4754行,89列(除去首行、首列)

  1. 直接删除,对模型影响不大的数据及特征,比如固定的个人信息
    列:custid、trade_no、bank_card_no、id_name
    行:删除很多项特征缺失的用户信息
    缺失特征数据的用户数据:apply_score等到最后一个特征全为缺失项的用户数据
  2. 特征转换:特征student_feature列的NA转为0,2转为0(2只有2个)
  3. 几个需考虑的因素
    城市:境外0,一线1,二线2,三线3,四线4,NA及其他(共4组数据,删除)
    现阶段不进行处理而直接删除的列:比如 first_transaction_time,latest_query_time,loans_latest_time

代码实现:

导入包

import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import*
from sklearn.linear_model import LogisticRegression
from  sklearn.svm import LinearSVC
from sklearn.tree import DecisionTreeClassifier
from xgboost import XGBClassifier
from lightgbm  import LGBMClassifier

数据处理

"""2. 读取数据"""
dataset = pd.read_csv('F:\AI\mission_data\mission_data\data.csv&
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值