word2vec实现

TensorFlow实现word2vec

# encoding=utf8  
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import collections
import math
import os
import random
import zipfile

import numpy as np
from six.moves import urllib
from six.moves import xrange  # pylint: disable=redefined-builtin
import tensorflow as tf

# Step 1: 下载数据
url = 'http://mattmahoney.net/dc/'

# 下载数据集
def maybe_download(filename, expected_bytes):
    """Download a file if not present, and make sure it's the right size."""
    if not os.path.exists(filename):
        filename, _ = urllib.request.urlretrieve(url + filename, filename)
    # 获取文件相关属性
    statinfo = os.stat(filename)
    # 比对文件的大小是否正确
    if statinfo.st_size == expected_bytes:
        print('Found and verified', filename)
    else:
        print(statinfo.st_size)
        raise Exception(
            'Failed to verify ' + filename + '. Can you get to it with a browser?')
    return filename

filename = maybe_download('text8.zip', 31344016)

# Read the data into a list of strings.
def read_data(filename):
    """Extract the first file enclosed in a zip file as a list of words"""
    with zipfile.ZipFile(filename) as f:
        data = tf.compat.as_str(f.read(f.namelist()[0])).split()
    return data

# 单词表
words = read_data(filename)

# Data size
print('Data size', len(words))

# Step 2: Build the dictionary and replace rare words with UNK token.
# 只留50000个单词,其他的词都归为UNK
vocabulary_size = 50000

def build_dataset(words, vocabulary_size):
    count = [['UNK', -1]]
    # extend追加一个列表
    # Counter用来统计每个词出现的次数
    # most_common返回一个TopN列表,只留50000个单词包括UNK  
    # c = Counter('abracadabra')
    # c.most_common()
    # [('a', 5), ('r', 2), ('b', 2), ('c', 1), ('d', 1)]
    # c.most_common(3)
    # [('a', 5), ('r', 2), ('b', 2)]
    # 前50000个出现次数最多的词
    count.extend(collections.Counter(words).most_common(vocabulary_size - 1))
    # 生成 dictionary,词对应编号, word:id(0-49999)
    # 词频越高编号越小
    dictionary = dict()
    for word, _ in count:
        dictionary[word] = len(dictionary)
    # data把数据集的词都编号
    data = list()
    unk_count = 0
    for word in words:
        if word in dictionary:
            index = dictionary[word]
        else:
            index = 0  # dictionary['UNK']
            unk_count += 1
        data.append(index)
    # 记录UNK词的数量
    count[0][1] = unk_count
    # 编号对应词的字典
    reverse_dictionary = dict(zip(dictionary.values(), dictionary.keys()))
    return data, count, dictionary, reverse_dictionary

# data 数据集,编号形式
# count 前50000个出现次数最多的词
# dictionary 词对应编号
# reverse_dictionary 编号对应词
data, count, dictionary, reverse_dictionary = build_dataset(words, vocabulary_size)
del words  # Hint to reduce memory.
print('Most common words (+UNK)', count[:5])
print('Sample data', data[:10], [reverse_dictionary[i] for i in data[:10]])

data_index = 0

# Step 3: Function to generate a training batch for the skip-gram model.
def generate_batch(batch_size, num_skips, skip_window):
    global data_index
    assert batch_size % num_skips == 0
    assert num_skips <= 2 * skip_window
    
    batch = np.ndarray(shape=(batch_size), dtype=np.int32)
    labels = np.ndarray(shape=(batch_size, 1), dtype=np.int32)
    
    span = 2 * skip_window + 1  # [ skip_window target skip_window ]
    buffer = collections.deque(maxlen=span)
    # [ skip_window target skip_window ]
            # [ skip_window target skip_window ]
                    # [ skip_window target skip_window ]
            
#     [0 1 2 3 4 5 6 7 8 9 ...]
#            t     i  
    # 循环3次
    for _ in range(span):
        buffer.append(data[data_index])
        data_index = (data_index + 1) % len(data)
    # 获取batch和labels
    for i in range(batch_size // num_skips):
        target = skip_window  # target label at the center of the buffer
        targets_to_avoid = [skip_window]
        # 循环2次,一个目标单词对应两个上下文单词
        for j in range(num_skips):
            while target in targets_to_avoid:
                # 可能先拿到前面的单词也可能先拿到后面的单词
                target = random.randint(0, span - 1)
            targets_to_avoid.append(target)
            batch[i * num_skips + j] = buffer[skip_window]
            labels[i * num_skips + j, 0] = buffer[target]
        buffer.append(data[data_index])
        data_index = (data_index + 1) % len(data)
    # Backtrack a little bit to avoid skipping words in the end of a batch
    # 回溯3个词。因为执行完一个batch的操作之后,data_index会往右多偏移span个位置
    data_index = (data_index + len(data) - span) % len(data)
    return batch, labels

# 打印sample data
batch, labels = generate_batch(batch_size=8, num_skips=2, skip_window=1)
for i in range(8):
    print(batch[i], reverse_dictionary[batch[i]],
        '->', labels[i, 0], reverse_dictionary[labels[i, 0]])

# Step 4: Build and train a skip-gram model.
batch_size = 128
# 词向量维度
embedding_size = 128  # Dimension of the embedding vector.
skip_window = 1       # How many words to consider left and right.
num_skips = 2         # How many times to reuse an input to generate a label.

# We pick a random validation set to sample nearest neighbors. Here we limit the
# validation samples to the words that have a low numeric ID, which by
# construction are also the most frequent.
valid_size = 16     # Random set of words to evaluate similarity on.
valid_window = 100  # Only pick dev samples in the head of the distribution.
# 从0-100抽取16个整数,无放回抽样
valid_examples = np.random.choice(valid_window, valid_size, replace=False) 
# 负采样样本数
num_sampled = 64    # Number of negative examples to sample.

graph = tf.Graph()
with graph.as_default():
    # Input data.
    train_inputs = tf.placeholder(tf.int32, shape=[batch_size])
    train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1])
    valid_dataset = tf.constant(valid_examples, dtype=tf.int32)

    # Ops and variables pinned to the CPU because of missing GPU implementation
#     with tf.device('/cpu:0'):
        # 词向量
        # Look up embeddings for inputs.
    embeddings = tf.Variable(
        tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0))
    # embedding_lookup(params,ids)其实就是按照ids顺序返回params中的第ids行
    # 比如说,ids=[1,7,4],就是返回params中第1,7,4行。返回结果为由params的1,7,4行组成的tensor
    # 提取要训练的词
    embed = tf.nn.embedding_lookup(embeddings, train_inputs)

    # Construct the variables for the noise-contrastive estimation(NCE) loss
    nce_weights = tf.Variable(
        tf.truncated_normal([vocabulary_size, embedding_size],
                        stddev=1.0 / math.sqrt(embedding_size)))
    nce_biases = tf.Variable(tf.zeros([vocabulary_size]))

    # Compute the average NCE loss for the batch.
    # tf.nce_loss automatically draws a new sample of the negative labels each
    # time we evaluate the loss.
    loss = tf.reduce_mean(
        tf.nn.nce_loss(weights=nce_weights,
                       biases=nce_biases,
                       labels=train_labels,
                       inputs=embed,
                       num_sampled=num_sampled,   
                       num_classes=vocabulary_size))

    # Construct the SGD optimizer using a learning rate of 1.0.
    optimizer = tf.train.GradientDescentOptimizer(1).minimize(loss)

    # Compute the cosine similarity between minibatch examples and all embeddings.
    norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims=True))
    normalized_embeddings = embeddings / norm
    # 抽取一些常用词来测试余弦相似度
    valid_embeddings = tf.nn.embedding_lookup(
        normalized_embeddings, valid_dataset)
    # valid_size == 16
    # [16,1] * [1*50000] = [16,50000]
    similarity = tf.matmul(
        valid_embeddings, normalized_embeddings, transpose_b=True)

    # Add variable initializer.
    init = tf.global_variables_initializer()

# Step 5: Begin training.
num_steps = 100001
final_embeddings = []

with tf.Session(graph=graph) as session:
    # We must initialize all variables before we use them.
    init.run()
    print("Initialized")

    average_loss = 0
    for step in xrange(num_steps):
        # 获取一个批次的target,以及对应的labels,都是编号形式的
        batch_inputs, batch_labels = generate_batch(
            batch_size, num_skips, skip_window)
        feed_dict = {train_inputs: batch_inputs, train_labels: batch_labels}

        # We perform one update step by evaluating the optimizer op (including it
        # in the list of returned values for session.run()
        _, loss_val = session.run([optimizer, loss], feed_dict=feed_dict)
        average_loss += loss_val

        # 计算训练2000次的平均loss
        if step % 2000 == 0:
            if step > 0:
                average_loss /= 2000
            # The average loss is an estimate of the loss over the last 2000 batches.
            print("Average loss at step ", step, ": ", average_loss)
            average_loss = 0
    
        # Note that this is expensive (~20% slowdown if computed every 500 steps)
        if step % 20000 == 0:
            sim = similarity.eval()
            # 计算验证集的余弦相似度最高的词
            for i in xrange(valid_size):
                # 根据id拿到对应单词
                valid_word = reverse_dictionary[valid_examples[i]]
                top_k = 8  # number of nearest neighbors
                # 从大到小排序,排除自己本身,取前top_k个值
                nearest = (-sim[i, :]).argsort()[1:top_k + 1]
                log_str = "Nearest to %s:" % valid_word
                for k in xrange(top_k):
                    close_word = reverse_dictionary[nearest[k]]
                    log_str = "%s %s," % (log_str, close_word)
                print(log_str)
    # 训练结束得到的词向量
    final_embeddings = normalized_embeddings.eval()

# Step 6: Visualize the embeddings.

def plot_with_labels(low_dim_embs, labels, filename='tsne.png'):
    assert low_dim_embs.shape[0] >= len(labels), "More labels than embeddings"
    # 设置图片大小
    plt.figure(figsize=(15, 15))  # in inches
    for i, label in enumerate(labels):
        x, y = low_dim_embs[i, :]
        plt.scatter(x, y)
        plt.annotate(label,
                 xy=(x, y),
                 xytext=(5, 2),
                 textcoords='offset points',
                 ha='right',
                 va='bottom')

    plt.savefig(filename)

try:
    from sklearn.manifold import TSNE
    import matplotlib.pyplot as plt

    tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000, method='exact')# mac:method='exact'
    # 画500个点
    plot_only = 500
    low_dim_embs = tsne.fit_transform(final_embeddings[:plot_only, :])
    labels = [reverse_dictionary[i] for i in xrange(plot_only)]
    plot_with_labels(low_dim_embs, labels)

except ImportError:
    print("Please install sklearn, matplotlib, and scipy to visualize embeddings.")

结果:

Found and verified text8.zip
Data size 17005207
Most common words (+UNK) [['UNK', 418391], ('the', 1061396), ('of', 593677), ('and', 416629), ('one', 411764)]
Sample data [5234, 3081, 12, 6, 195, 2, 3134, 46, 59, 156] ['anarchism', 'originated', 'as', 'a', 'term', 'of', 'abuse', 'first', 'used', 'against']
3081 originated -> 12 as
3081 originated -> 5234 anarchism
12 as -> 6 a
12 as -> 3081 originated
6 a -> 12 as
6 a -> 195 term
195 term -> 2 of
195 term -> 6 a
WARNING:tensorflow:From <ipython-input-2-d12d6ec3e768>:201: calling reduce_sum (from tensorflow.python.ops.math_ops) with keep_dims is deprecated and will be removed in a future version.
Instructions for updating:
keep_dims is deprecated, use keepdims instead
Initialized
Average loss at step  0 :  284.11376953125
Nearest to had: lyrics, japanese, metric, perl, monoclonal, sulu, tsarina, philosophicus,
Nearest to system: remixes, glaciations, globemaster, haag, looted, professional, lambda, boggs,
Nearest to with: alerts, cddb, ruins, mapped, concealing, abandoned, btr, endured,
Nearest to they: coloureds, implicate, monk, bocks, alarm, recall, wayward, waco,
Nearest to that: sucked, normed, nanotech, verrocchio, panini, gottwald, leith, downhill,
Nearest to all: alliances, reintegrated, lira, distress, bag, grieving, zadok, disagreed,
Nearest to were: horsemanship, centralisation, cash, ethiopians, kalmyks, accorded, iai, writ,
Nearest to b: sovereigns, brigadists, dixie, bu, configure, detrimental, dodgson, achieved,
Nearest to d: avenue, guide, moro, backs, suburbs, dagmar, smitten, myoglobin,
Nearest to but: hornsby, unresolved, married, druze, nautilus, appleby, welt, basingstoke,
Nearest to world: horton, lom, neuromancer, amber, tenacity, relieve, irritate, cafe,
Nearest to who: mission, ephemeris, ivan, arlo, checker, avi, hurl, danse,
Nearest to state: argues, skyscraper, anachronistic, turk, ramone, bessarabia, novices, stonewall,
Nearest to its: cornered, venlo, holders, chogm, champagne, hoaxes, leaded, reacts,
Nearest to seven: himachal, erased, deliberate, injured, johns, formulated, geodesy, mackintosh,
Nearest to from: broadcasters, updating, subsection, boltzmann, peas, liberally, enlightenment, eudoxus,
Average loss at step  2000 :  113.04784357261657
Average loss at step  4000 :  52.33355932211876
Average loss at step  6000 :  33.59567687177658
Average loss at step  8000 :  23.862549111247063
Average loss at step  10000 :  17.969429575562476
Average loss at step  12000 :  13.926370180726051
Average loss at step  14000 :  11.779454688310624
Average loss at step  16000 :  10.061842621088028
Average loss at step  18000 :  8.388145539164544
Average loss at step  20000 :  8.122129232168197
Nearest to had: has, was, japanese, sometimes, are, archie, is, perl,
Nearest to system: infectious, frisian, agouti, looted, agave, operatorname, desolate, holiday,
Nearest to with: in, and, for, of, by, agouti, mapped, at,
Nearest to they: he, it, not, we, iota, monk, coke, canons,
Nearest to that: this, however, and, radians, agouti, sucked, for, which,
Nearest to all: alliances, arctic, circ, crops, deposits, falsely, milne, archie,
Nearest to were: are, is, was, fianna, have, devoid, fit, be,
Nearest to b: hadith, and, one, achieved, zodiac, week, video, castlereagh,
Nearest to d: backs, avenue, and, suburbs, coke, cars, zero, operatorname,
Nearest to but: and, or, circ, is, operatorname, village, fao, for,
Nearest to world: gollancz, dasyprocta, amber, free, weeks, identity, agouti, horton,
Nearest to who: mission, and, rs, abode, ivan, operatorname, sqrt, not,
Nearest to state: aslan, dasyprocta, apologia, arch, versions, vs, studd, voluntary,
Nearest to its: the, his, holders, a, antimatter, officers, this, plato,
Nearest to seven: nine, eight, zero, six, three, four, five, operatorname,
Nearest to from: in, and, by, of, soldiers, tutorial, demands, additional,
Average loss at step  22000 :  7.005066948890686
Average loss at step  24000 :  6.884686042189598
Average loss at step  26000 :  6.751842265367508
Average loss at step  28000 :  6.473512506365776
Average loss at step  30000 :  5.8744206006526944
Average loss at step  32000 :  5.995232770204544
Average loss at step  34000 :  5.7021913329362865
Average loss at step  36000 :  5.757426428198815
Average loss at step  38000 :  5.487643666028976
Average loss at step  40000 :  5.250354513168335
Nearest to had: has, was, have, were, pelagius, also, archie, is,
Nearest to system: akihabara, infectious, vma, desolate, speedup, frisian, looted, agouti,
Nearest to with: and, in, by, for, circ, agouti, dasyprocta, abet,
Nearest to they: he, we, it, there, not, she, amputated, you,
Nearest to that: which, this, however, it, also, but, agouti, usually,
Nearest to all: alliances, three, circ, crops, archie, arctic, several, alien,
Nearest to were: are, was, have, is, be, fianna, had, devoid,
Nearest to b: d, hadith, UNK, video, vma, zodiac, n, week,
Nearest to d: b, avenue, backs, and, zero, UNK, eagles, muentzer,
Nearest to but: and, amalthea, which, operatorname, or, agouti, archie, circ,
Nearest to world: gollancz, amber, dasyprocta, free, weeks, horton, neuromancer, identity,
Nearest to who: and, rs, he, which, mission, not, abode, operatorname,
Nearest to state: aslan, dasyprocta, apologia, skyscraper, studd, arch, versions, almonds,
Nearest to its: his, the, their, some, holders, antimatter, a, gland,
Nearest to seven: six, eight, four, five, nine, three, zero, operatorname,
Nearest to from: in, and, agouti, on, at, soldiers, of, tutorial,
Average loss at step  42000 :  5.342700390219688
Average loss at step  44000 :  5.257400708198547
Average loss at step  46000 :  5.232621927618981
Average loss at step  48000 :  5.224347810149193
Average loss at step  50000 :  4.982663393139839
Average loss at step  52000 :  5.02606281208992
Average loss at step  54000 :  5.179516818642616
Average loss at step  56000 :  5.042778642892838
Average loss at step  58000 :  5.052208427667618
Average loss at step  60000 :  4.944298170566559
Nearest to had: has, have, was, were, kornilov, pelagius, keto, been,
Nearest to system: infectious, boggs, akihabara, looted, desolate, vma, speedup, averaging,
Nearest to with: kapoor, in, by, michelob, for, and, agouti, ursus,
Nearest to they: he, we, there, it, you, not, she, who,
Nearest to that: which, however, this, michelob, but, it, thibetanus, unranked,
Nearest to all: three, some, ursus, several, many, two, arctic, archie,
Nearest to were: are, was, have, had, be, is, antoninus, been,
Nearest to b: d, hadith, n, pulau, video, week, vma, ursus,
Nearest to d: b, avenue, backs, five, n, suburbs, muentzer, eagles,
Nearest to but: however, and, amalthea, michelob, while, agouti, operatorname, which,
Nearest to world: gollancz, amber, dasyprocta, tenacity, free, identity, kale, state,
Nearest to who: he, which, rs, not, they, she, there, and,
Nearest to state: aslan, dasyprocta, studd, skyscraper, apologia, ursus, almonds, versions,
Nearest to its: their, his, the, her, gland, some, vma, antimatter,
Nearest to seven: eight, six, nine, five, four, zero, three, ursus,
Nearest to from: in, and, at, through, agouti, after, ursus, of,
Average loss at step  62000 :  4.985212045431137
Average loss at step  64000 :  4.850804277658463
Average loss at step  66000 :  4.597447846651077
Average loss at step  68000 :  4.994595564246177
Average loss at step  70000 :  4.900031761884689
Average loss at step  72000 :  4.751789740800858
Average loss at step  74000 :  4.8070709457397465
Average loss at step  76000 :  4.728085454940796
Average loss at step  78000 :  4.805462856858969
Average loss at step  80000 :  4.791194909334183
Nearest to had: has, have, was, were, been, microcebus, pelagius, callithrix,
Nearest to system: systems, infectious, looted, averaging, boggs, pioneering, desolate, asu,
Nearest to with: kapoor, in, by, through, between, michelob, and, agouti,
Nearest to they: we, he, there, it, you, she, not, who,
Nearest to that: which, however, this, but, unranked, michelob, busan, it,
Nearest to all: many, some, several, these, two, various, ursus, three,
Nearest to were: are, was, have, had, be, been, antoninus, by,
Nearest to b: d, UNK, n, pulau, escuela, hadith, c, ursus,
Nearest to d: b, avenue, n, backs, four, suburbs, upanija, muentzer,
Nearest to but: however, and, while, michelob, amalthea, agouti, operatorname, or,
Nearest to world: amber, microcebus, gollancz, pierrot, tenacity, upanija, state, dasyprocta,
Nearest to who: he, which, they, rs, she, and, there, also,
Nearest to state: aslan, dasyprocta, apologia, studd, almonds, ursus, leontopithecus, skyscraper,
Nearest to its: their, his, the, her, vma, gland, some, germs,
Nearest to seven: six, eight, five, four, nine, three, ursus, two,
Nearest to from: in, through, into, nine, and, after, at, between,
Average loss at step  82000 :  4.763005537033081
Average loss at step  84000 :  4.757209443926811
Average loss at step  86000 :  4.7662451255321505
Average loss at step  88000 :  4.748851106643677
Average loss at step  90000 :  4.72257151889801
Average loss at step  92000 :  4.662241491556167
Average loss at step  94000 :  4.72914843761921
Average loss at step  96000 :  4.694688119530678
Average loss at step  98000 :  4.582407057881356
Average loss at step  100000 :  4.703829190611839
Nearest to had: has, have, was, were, been, microcebus, became, callithrix,
Nearest to system: systems, globemaster, delphinus, infectious, looted, pioneering, averaging, vitrification,
Nearest to with: peacocks, kapoor, in, between, through, by, circ, michelob,
Nearest to they: we, he, there, you, it, she, not, thibetanus,
Nearest to that: which, however, this, but, unranked, michelob, what, callithrix,
Nearest to all: several, many, some, these, each, various, both, crops,
Nearest to were: are, was, have, had, be, antoninus, including, while,
Nearest to b: d, c, pulau, hadith, n, escuela, ursus, vma,
Nearest to d: b, avenue, n, backs, zero, upanija, six, e,
Nearest to but: however, and, while, although, or, michelob, agouti, amalthea,
Nearest to world: microcebus, amber, tiamat, gollancz, pierrot, upanija, state, dasyprocta,
Nearest to who: he, rs, and, she, which, they, moreover, also,
Nearest to state: aslan, dasyprocta, studd, apologia, ursus, kling, thibetanus, mitral,
Nearest to its: their, his, the, her, some, any, germs, gland,
Nearest to seven: eight, six, five, nine, four, three, zero, ursus,
Nearest to from: in, through, constituci, into, under, after, before, eight,

代码引自:
深度学习框架Tensorflow学习与应用-第十一课 word2vec讲解和使用

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值