[11]2020-CVPR-State-Relabeling Adversarial Active Learning论文笔记

在这里插入图片描述
2020 − C V P R 2020-CVPR 2020CVPR

一.摘要(Abstract)
1. 动机(Motivation)

设计一个有效的标记算法,sample oracle需要标记的最有信息的样本。
问 题 : 设 计 采 样 算 法 , 使 o r a c l e 需 要 标 记 的 样 本 信 息 量 最 大 ? \color{red}{问题:设计采样算法,使oracle需要标记的样本信息量最大?} 使oracle

2. 主要贡献(Contribution)
  • 提出SRAAL模型,利用标注信息和已标记/无标记的状态信息来获取最有信息的无标记样本;
  • 设计初始化labeled pool的算法(k-center),该算法使后续的采样更有效。

思 路 : 1. 更 改 初 始 化 有 标 记 样 本 池 的 方 法 ; 2. 更 改 采 样 策 略 ( 利 用 标 注 信 息 和 状 态 信 息 ) 。 \color{red}{思路:1. 更改初始化有标记样本池的方法;2.更改采样策略(利用标注信息和状态信息)。} 1.2.
思 考 ( A L 可 提 高 采 样 性 能 的 途 径 ) : 上 述 1 和 2 。 \color{blue}{思考(AL可提高采样性能的途径):上述1和2。 } AL12

3. SRAAL结构:
  • 表示生成器(representation generator)
    利用与传统重构信息互补的注释信息生成统一的样本表示,将语义嵌入到整个数据表示中。
    步骤:
    a. 基于VAE结构建立一个无监督图像重构器以学习rich representation;
    b. 设计一个有监督目标学习器,预测有标记样本的注释信息(这些注释信息嵌于representation中);
    c. 级联上面的representations。
  • 状态判别器(state discriminator)
    设计了一个在线不确定性指标,该指标赋予无标记样本以不同的重要性。
    (结果:根据判别器预测的状态,选择最有信息的样本)
    步骤:
    a. 在线不确定性指标(indicator)为每个无标记样本计算不确定性分数以作为它的新的state label;
    b. 判别器根据重标记的状态选择更有指导性的样本。
二.引言(Introduce)
1. 降低有标记数据的需求的方法

无监督学习,半监督学习,弱监督学习,主动学习。

2. AL的最近发展
  • 主要问题:
    如何从unlabeled pool中选择最优信息的样本。
  • 前人工作:
    a. 充分利用有标记数据的标注信息(比如:Learning Loss for Active Learnign);
    b. 将样本的状态信息(1:labeled;0:unlabeled)视为一种对抗标记。
三.相关工作(Related Work)
1. 当前AL方法
  • 基于pool的方法;
    分为基于分布的方法和基于不确定性的方法;
  • 合成方法。
四.方法(Method)
1. 概况(Overview)

在这里插入图片描述
在这里插入图片描述

2. 统一表示生成器(Unified representation generator)

统一表示生成器=UIR+STL(两种表示的级联);
(1)无监督图像重构器(unsupervised image reconstructor, UIR)——VAE

  • 输入(训练):有/无标记样本经过(CNN+FC)得到的隐藏变量;
  • 输出:基于高斯先验重构的样本;
  • 损失函数:
    L U I R = L U U I R + L L U I R \mathcal{L}^{UIR}=\mathcal{L}_U^{UIR}+\mathcal{L}_L^{UIR} LUIR=LUUIR+LLUIR
    L U U I R = E [ l o g [ p ϕ ( x U ∣ z U ) ] − D K L ( q θ ( z U ∣ x U ) ∣ ∣ p ( z ) ) ] \mathcal{L}_U^{UIR}=E[log[p_{\phi}(x_U|z_U)]-D_{KL}(q_\theta(z_U|x_U)||p(z))] LUUIR=E[log[pϕ(xUzU)]DKL(qθ(zUxU)p(z))]
    L L U I R = E [ l o g [ p ϕ ( x L ∣ z L ) ] − D K L ( q θ ( z L ∣ x L ) ∣ ∣ p ( z ) ) ] \mathcal{L}_L^{UIR}=E[log[p_{\phi}(x_L|z_L)]-D_{KL}(q_\theta(z_L|x_L)||p(z))] LLUIR=E[log[pϕ(xLzL)]DKL(qθ(zLxL)p(z))]
    其中:
    L U U I R \mathcal{L}_U^{UIR} LUUIR:无标记样本的目标函数;
    L L U I R \mathcal{L}_L^{UIR} LLUIR:有标记样本的目标函数;
    z z z:隐藏变量;
    ϕ \phi ϕ:编码器 p ϕ p_\phi pϕ的参数;
    θ \theta θ:解码器 q θ q_\theta qθ的参数;

(2)有监督目标学习器(supervised target learner, STL)——VAE

  • 输入(训练):有标记样本经过(CNN+FC)得到的隐藏变量;
  • 输出:预测的注释(类别);
  • 损失:
    L L S T L = E [ l o g [ p ϕ ( y L ∣ z L ) ] − D K L ( q θ ( z L ∣ x L ) ∣ ∣ p ( z ) ) ] \mathcal{L}_L^{STL}=E[log[p_\phi (y_L|z_L)]-D_{KL}(q_\theta(z_L|x_L)||p(z))] LLSTL=E[log[pϕ(yLzL)]DKL(qθ(zLxL)p(z))]
    其中:
    z L z_L zL:有标记样本的隐藏变量;
    ϕ \phi ϕ:编码器 p ϕ p_\phi pϕ的参数;
    θ \theta θ:解码器 q θ q_\theta qθ的参数;
  • 其他:解码器因任务的不同而不同(图像分类->分类器;语义分割->分割模型)。
3. 状态判断器和状态重标记(State discriminator and state relabeling)

(1)在线不确定度指标(OUI, online uncertainty indicator)

  • 作用
    基于target model的预测vector计算不确定度score;
  • 公式
    I n d i c a t o r ( x U ) = 1 − M I N V a r ( V ) V a r ( V ) × m a x ( V ) Indicator(x_U)=1-\frac{MINVar(V)}{Var(V)}\times max(V) Indicator(xU)=1Var(V)MINVar(V)×max(V)
    其中:
    a) x U x_U xU:无标记样本;
    b) V = p ( x U ∣ D L ) V=p(x_U|D_L) V=p(xUDL):当前有标记样本pool( D L D_L DL)训练的目标模型对 x U x_U xU预测的probability vector;
    c) M I N V a r ( V ) = V a r ( V ′ ) = 1 C ( ( 1 C − m a x ( V ) ) 2 + ( C − 1 ) ( 1 C − 1 − m a x ( V ) 1 − C ) 2 ) MINVar(V)=Var(V^{'})=\frac{1}{C}((\frac{1}{C}-max(V))^2+(C-1)(\frac{1}{C}-\frac{1-max(V)}{1-C})^2) MINVar(V)=Var(V)=C1((C1max(V))2+(C1)(C11C1max(V))2)
    C C C:类别数目;
    M I N V a r ( V ) MINVar(V) MINVar(V)是向量 V ′ V^{'} V的方差, V ′ V^{'} V的最大元素与 V V V相同, V ′ V^{'} V的其他元素都等于 1 − m a x ( V ) C − 1 \frac{1-max(V)}{C-1} C11max(V)
    M I N V a r ( V ) MINVar(V) MINVar(V)是(最大值与 V V V的最大值相同的)向量间的最小方差。
    不 太 懂 . . . . . . \color{red}{不太懂......} ......
  • 性质
    a) ∈ [ 0 , 1 ) \in [0,1) [0,1)
    b)与最大概率值负相关;
    c)与概率分布的集中度正相关。
    (2)判别器的目标函数
    L D = − E [ l o g ( D ( q θ ( z L ∣ x L ) ) ) ] − E [ l o g ( I n d i c a t o r ( x U ) − D ( q θ ( z U ∣ x U ) ) ) ] \mathcal{L}^D=-E[log(D(q_\theta (z_L|x_L)))]-E[log(Indicator(x_U)-D(q_\theta(z_U|x_U)))] LD=E[log(D(qθ(zLxL)))]E[log(Indicator(xU)D(qθ(zUxU)))]
    (3)统一表示生成器的目标函数
    L a d v G = − E [ l o g ( D ( q θ ( z L ∣ x L ) ) ) ] − E [ l o g ( D ( q θ ( z U ∣ x U ) ) ) ] L_{adv}^G=-E[log(D(q_\theta(z_L|x_L)))]-E[log(D(q_\theta(z_U|x_U)))] LadvG=E[log(D(qθ(zLxL)))]E[log(D(qθ(zUxU)))]
    (4)隐藏变量生成器的综合目标函数
    L G = λ 1 L U I R + λ 2 L L S T L + λ 3 L a d v G \mathcal{L}^G=\lambda_1\mathcal{L}^{UIR}+\lambda_2\mathcal{L}_L^{STL}+\lambda_3\mathcal{L}_{adv}^G LG=λ1LUIR+λ2LLSTL+λ3LadvG
    不 理 解 上 述 几 个 公 式 ! ! ! \color{red}{不理解上述几个公式!!!}
3. 主动学习中的采样策略(Sampling strategy in active learning)
  • 采样阶段
    生成器:对每个无标记样本生成统一表示;
    判别器:预测状态值;
    然后选择top-K的样本给oracle标注。
4. 初始化采样算法(Initially sampling algorithm)

(1)目标
找到数据点的子集,其中任一点到子集的最大距离最小。
(2)步骤
在这里插入图片描述

  • 训练无监督图像生成器
    学习所有样本的隐藏变量;
  • 贪婪k-center算法
    选择与子集最大距离最小的点;
    其中,两样本距离=隐藏变量的欧式距离(Euclidean distance)
  • 输出
    M \mathcal{M} M个oracle标注的样本构成的子集,并送往labeled pool。
四. 实验(Experiment)
  • ∣ D L 0 ∣ = 10 % |D_L^0|=10\% DL0=10%整个数据集大小
    D L 0 D_L^0 DL0:初始化labeled pool ;
    M M M 10 % 10\% 10%
    D U 0 D_U^0 DU0:剩下 90 % 90\% 90%的样本构成initial unlabeled pool。
  • 每轮迭代选择 K = 5 % K=5\% K=5%的样本,直到labeled samples达到 40 % 40\% 40%
  • 重复5次实验,每次实验有不同的initial labeled pool,最终展示mean performance。
1. 图像分类中的主动学习(Active learning for image classification)
  • 数据集(Dataset)
数据集样本总数训练集测试集图片大小其他
CIFAR-10600005000010000 32 × 32 × 3 32\times32\times3 32×32×310个类别,每类6000个样本
CIFAR-100600005000010000 32 × 32 × 3 32\times32\times3 32×32×3100个类别,每类600个样本
Caltech-1019146101个类别,每类40-800个样本
  • 对比方法(Compared methods)
    Core-set[37];
    Monte-Carlo Droupout[14];
    VAAL[39];
    LL4AL。
  • 性能评估
    5次重复实验的平均accuracy。
    注:
    每个实验,所有方法都从同一个初始化labeled pool开始;
    target model:ResNet-18;
    在这里插入图片描述
    在这里插入图片描述
2. 语义分割中的主动学习(Active learning for semantic segmentation)
  • 数据集(Dataset)
数据集帧数类别
Cityscape347519
  • 对比方法(Compared methods)
    Core-set[37];
    Monte-Carlo Droupout[14];
    Query-By-Committee (QBC) [25];
    suggestive annotation (SA) [42]
    VAAL[39]。
  • 性能评估
    重复实验的平均IoU
    注意:
    每个实验,所有方法都从同一个初始化labeled pool开始,且每次迭代都有同样的selection budget ;
    target model:DRN;
    在这里插入图片描述
3. 初始化算法对比(Initialization algorithm comparison)

在这里插入图片描述

4. 消融研究(Ablation study)

在这里插入图片描述

5. 不同不确定性评估的对比(Comparison on different uncertainty estimators)

在这里插入图片描述
s c o r e 越 大 越 好 吗 ? \color{red}{score越大越好吗?} score

参考理解
  1. 变分自编码器(VAE)
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值