简介
- machine learning本质上找到一个函数变换
- 根据函数不同划分机器学习类型
- regression:回归任务,输出是数值
- classification:分类任务,输出是类别
- structured learing:结构化任务,比如图片,文本等
- 如何寻找拟合函数
- 定义带未知数的函数作为我们的model:表征函数的基础形式
- 定义loss损失函数:表征某一组参数下的模型优劣
- 定义优化器:找到loss函数最小对应的参数值,主要使用的方法是gradient descent
- 以youtube浏览量为例
- 线性拟合函数:model bias,表示线性model很难拟合真正的函数
- 非线性拟合函数:通过若干蓝色的初始函数累加拟合出蓝色函数
3 batch - batch_size: 每批次的数据大小
- epoch:整个数据集的学习次数
- update time(step):学习的步数,对应更新参数的次数,等于 train_num / batch_size
- 经典网络