机器学习基本概念简介

简介

  1. machine learning本质上找到一个函数变换
  • 根据函数不同划分机器学习类型
    • regression:回归任务,输出是数值
    • classification:分类任务,输出是类别
    • structured learing:结构化任务,比如图片,文本等
  1. 如何寻找拟合函数
    总体流程
  • 定义带未知数的函数作为我们的model:表征函数的基础形式
  • 定义loss损失函数:表征某一组参数下的模型优劣
  • 定义优化器:找到loss函数最小对应的参数值,主要使用的方法是gradient descent
    梯度下降
  1. 以youtube浏览量为例
  • 线性拟合函数:model bias,表示线性model很难拟合真正的函数
  • 非线性拟合函数:通过若干蓝色的初始函数累加拟合出蓝色函数
    在这里插入图片描述
    在这里插入图片描述
    3 batch
  • batch_size: 每批次的数据大小
  • epoch:整个数据集的学习次数
  • update time(step):学习的步数,对应更新参数的次数,等于 train_num / batch_size
    在这里插入图片描述
  1. 经典网络

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值